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Exposure of a-ene-VCPs to catalytic [Rh(dppm)]SbF; led to the discovery of a novel Rh(l)-catalyzed [3+2] reaction, which was shown to be
efficient for the construction of 5/6- and 5/7-bicyclic compounds rather than the anticipated type Il [5+2] products.

Transition metal-catalyzed cycloadditions provide efficient tools
for the synthesis of complex molecules from simple starting
acyclic materials. In particular, they provide access to medium-
sized ring systems, which are difficult to achieve by alternative
approaches, such as intramolecular substitution reactions.
Impressive examples in this field are the transition metal-
catalyzed [5+2] cycloadditions, pioneered by Wender and co-
workers.! Both inter- and intramolecular [5+2] reactions have
been developed and have great potential in synthesis. For
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instance, the intramolecular [5+2] cycloadditions of 3-ene/yne-
vinylcyclopropanes (3-ene/yne-VCPs) enable rapid access to
5/7- and 6/7-bicyclic systems (Scheme 1, reaction a) and have
had a significant impact on synthetic endeavors.”

Scheme 1. Type I and II [5+2] and Diels—Alder Reactions
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Inspired by type I and type II Diels—Alder reactions,’
which form fused and bridged bicyclic six-membered-ring



systems, respectively (Scheme 1, reactions ¢ and d), we
wondered whether a type II [5+2] cycloaddition could be
realized from a new type of substrate, an o-ene-VCP
(Scheme 1, reaction b). Here we name the original Wender
[5+2] reaction of B-ene/yne-VCPs as the type I [5+2]
reaction, by analogy to type I and type II Diels—Alder
reactions. If the proposed type II [5+2] reaction succeeded,
it would provide a direct way to construct bridged cyclo-
heptane bicycles, which are found in a variety of natural
products such as cyclocitvinol.*

We began our investigation by exploring the reaction of
o-ene-VCP substrate 1la with a variety of Rh catalysts.
Interestingly, both neutral [Rh(CO),CI], and -cationic
[Rh(CO),]SbF; failed to promote the desired cycloaddition
(Table 1, entries 1 and 2). We then employed a cationic

Table 1. Screening of the Reaction Conditions”

H H
TN conditions Tsrxg‘/\’E> Tsh@ { @}
_— + TsN
TV N
H H
1a 2a 2a’ not observed
entry catalyst t (h) additive yield (2a, 2a")°
1 [Rh(CO),Cl]; 24 <5%, <6%
2 [Rh(CO),]SbF¢* 24 <5%, <5%
3 [Rh(dppm)]SbF¢? 24 61%, 10%
4 [Rh(dppe)]SbF¢* 24 46%, 5%
5 [Rh(dppp)ISbFs? 24 12%, <5%
6 [Rh(dppb)ISbFe? 24 <5%, <5%°
7 [Rh(BINAP)ISbF? 24 <5%, <b%*°
8 [Rh(dppf)]SbF¢” 24 —r
9 [Rh(dppCy)]ISbFe? 24 —r
10  [Rh(dppm)]SbF¢” 6 4AMS 94%, 0%

¢ Conditions: 5 mol % of Rh(I) catalyst, DCE as solvent (0.05 M), 85 °C.
®Isolated yields after flash column chromatography. © Prepared by treatment
of [Rh(CO),Cl], with AgSbFy. ¢ Prepared by treatment of [Rh(CO),Cl], with
AgSbFg and corresponding bidentate phosphine ligand. © The substrate was
consumed, but a complex mixture was obtained. /No reaction.

rhodium—bidentate phosphine complex as the catalyst,
generated in situ by treating [Rh(CO),Cl], with AgSbFg
and the dppm ligand. Interestingly, we obtained a
bicyclo[4.3.0]nonane cycloadduct 2a as the major product,

(3) For a recent review, see: Bear, B. R.; Sparks, S. M.; Shea, K. J.
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Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.
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together with an isomerization product 2a” (Table 1, entry
3). Here the vinylcyclopropane was participating in a
[3+2] cycloaddition rather than the expected [5+2]
pathway. This is the third example of an unactivated
vinylcyclopropane acting as a three-carbon synthon instead
of a five-carbon synthon.® We then screened various
ligands to see whether the reaction could be tuned to produce
the type II [5+2] product or improve the yield of the [3+2]
cycloadduct. When diphosphine ligands with longer tethers
were used, the reaction became messy (entries 4—6). For
example, employing [Rh(dppb)]SbF; as the catalyst led to a
complex mixture. More bulky and more electron-rich ligands
also failed to give improved results (entries 7—9). We then
turned back to using dppm as the ligand and optimized other
reaction parameters. To our delight, when 4 A molecular
sieves (MS) were used as an additive in this reaction system,
cycloadduct 2a was obtained in 94% isolated yield without
contamination of the isomerization product (entry 10).
Presumably, 4 A MS functioned as a water scavenger to
prevent the generation of acid, which was responsible for
the alkene isomerization. The structure of product 2a was
unambiguously determined by X-ray crystallography. Inter-
estingly, none of the above conditions led to the anticipated
[5+2] cycloadduct.

We hypothesized that the tether between the alkene and
the VCP unit in a-ene-VCP 1a might be too short for the
type II [5+2] reaction. To test this hypothesis, substrates 3a
and Sa with longer tethers were synthesized and subjected
to the optimized conditions. Interestingly, the Rh(I)-catalyzed
reaction of 3a still gave a [3+2] cycloadduct bearing a 5/7-
bicyclic skeleton, whereas for Sa, neither a [S+2] nor a [3+2]
reaction occurred (Scheme 2).

Scheme 2. Substrates with Longer Tethers
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Considering the importance of the synthesis of five-
membered carbocycles in chemistry, and the facts that
bicyclo[4.3.0]nonane and bicyclo[5.3.0]decane skeletons are
widely found in many biologically active natural products,
we were excited to explore the versatility of the [3+2]
cycloaddition. Especially, we expected that this [3+2]
reaction would provide a new approach for the synthesis of

(7) Rare examples to construct 5/7 bicyclic system were the intramo-
lecular Pauson—Khand reaction and the Pd-catalyzed [3+2] cycloaddition
of methylenecyclopropanes. Moreover, specific substrates or activated
multiple bonds were obligatory in these cases. See refs 8 and 9.

(8) (a) Trost, B. M.; Grese, T. A.; Chan, D. M. T. J. Am. Chem. Soc.
1991, 113, 7350. (b) Trost, B. M.; Grese, T. A. J. Org. Chem. 1992, 57,
686. For a recent highlight of transition metal-catalyzed [3+2] cycloadditions
to synthesize five-membered carbocycles, see: (¢) Marquand, P. L.; Tam,
W. Angew. Chem., Int. Ed. 2008, 47, 2976.
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the bicyclo[5.3.0]decane skeleton, which is a challenging
problem in synthesis and can be accessed by only a limited
number of methods.”

Exploration of the substrate scope was performed by using
the optimal conditions (Table 2). To our delight, the N-Boc

Table 2. Rh(I)-Catalyzed Intramolecular [3+2] Cycloaddition”

R = R

cat. [Rh(dppm)]SbFg ae
4 AMS, DCE, 95 °C

1 2

entry substrate time yield product
AN
BocN BocN
1 24 h 69%

?%21

1b 2b
2 TsN 36h 88% TsN
K[(V dr>19:1
H
1c 2c
Phj\/ Ph
H
= 72%
3 Tsl\%(v 36h o e TSN
H
1d 2d
H
ANF
4 TeN swon 3% @E5%e TSN
Phi dr>19:1° Ph
H
1e 2e
P H Me
TSN "Me TeN
5 48h  25% (52%)°
H
1f 2f
TsNNI 7
6 Herv no reaction®
19
TsN{Ae\/
7 W no reaction®
1h

“ Conditions: 5 mol % of [Rh(dppm)]SbFs, DCE as solvent (0.05 M),
95 °C, 4 A MS. Isolated yields are reported. ” Determined by 'H NMR.
“ The number in parentheses is the yield based on recovered starting material.
4 No reaction occurred and the starting material remained intact.

protected amine tether was also found to be compatible,
affording a satisfactory yield of the bicyclic product 2b (entry
1). To access substituted bicyclo[4.3.0]nonane products, a series
of o-ene-VCP substitution patterns were tested. The [3+2]
cycloaddition reaction tolerated both phenyl and alkyl substit-
uents on the tether and in all cases excellent diastereoselectivity
was observed (entries 2—4). Diastereomeric ratios of >19:1,
together with moderate to good yields, were observed for
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cycloadducts 2¢, 2d, and 2e. Introduction of a methyl group to
the terminal position of the ene part of the substrate was also
tolerated, albeit in decreased yield (entry 5). Attempts to
construct a bridgehead quaternary carbon failed: substitution
on the internal carbon of the ene moiety or the C(1) of the VCP
unit resulted in loss of reactivity (entries 6 and 7, 1g and 1h),
which is likely due to increased steric repulsion.

Encouraged by our initial success in creating a 5/7 ring
system, we made further efforts to generate seven-membered-
ring-containing products (Table 3). Isomeric substrate 3b

Table 3. Rh(I)-Catalyzed Intramolecular [3+2] Cycloaddition”
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@ Conc}itions: 5 mol % of [Rh(dppm)]SbFs, DCE as solvent (0.05 M),
95 °C, 4 A MS. Isolated yields are reported. ” The number in parentheses
is the yield based on recovered starting material.  Determined by 'H NMR.
4 The structure of cycloadduct 4e was determined by X-ray crystallography.

gave a new cycloadduct (4b) in good yield (entry 2).
Employing Boc as the nitrogen protecting group also worked
well to generate product 4c¢ (entry 3). Introducing aryl and

(9) (a) Inagaki, F.; Narita, S.; Hasegawa, T.; Kitagaki, S; Mukai, C.
Angew Chem., Int. Ed. 2009, 48, 2007 and references cited therein. (b)
Inagaki, F.; Mukai, C. Org. Lett. 2006, 8, 1217 and references cited therein.
(c) Brummond, K. M.; Chen, D. Org. Lett. 2008, 10, 705, and references
cited therein. (d) Brummond, K. M.; Chen, D.; Davis, M. M. J. Org. Chem.
2008, 73, 5064, and references cited therein.
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alkyl substitutents at the allylic position of the olefin afforded
excellent diastereoselectivity (dr >19:1), providing the bi-
cyclic products 4d and 4e in good yields (entries 4 and 5).
The results shown in Tables 2 and 3 demonstrate that the
present [3+2] cycloaddition can construct both 5/6- and 5/7-
bicyclic skeletons, a notable extension of VCP chemistry.
Unfortunately, substrates containing a carbon or oxygen
tether did not give the desired products (see the Supporting
Information for details). This is in contrast to previously
reported [342] reactions of 1-ene/yne/allene-VCPs, which
can incorporate C, N, and O tethers.®"

We synthesized o-yne-VCP 7 to test whether an alkyne
is also a good 27 component in the developed [3+2]
cycloaddition (Scheme 3). Surprisingly, under the standard

Scheme 3. Reaction of o-Yne-VCP 7
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reaction conditions for a-ene-VCPs, no [3+2] cycloadduct
was observed, but instead, cycloisomerization product 8 was
obtained in low yield.'” A higher yield of 8 was obtained
when this reaction was carried out with [Rh(CO),Cl], as the
catalyst, under a low pressure of CO.
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In conclusion, a novel [3+2] cycloaddition to give
cyclopentane-containing bicycles has been developed. The
VCP moiety of the a-ene-VCP acts as a three-carbon synthon
instead of as the initially anticipated five-carbon
synthon.®*™!! This unexpected [3+2] reaction provides a new
approach for the synthesis of five-membered carbocycles with
attractive features: not only the bicyclo[4.3.0]nonane skeleton
but also the challenging bicyclo[5.3.0]decane skeleton can
be realized through this transformation. Further studies of
the reaction mechanism, stereochemistry, ligand effects, and
origin of the preference for the [3+2] reaction over the type
II [5+2] reaction are ongoing.
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