Formal syntheses of (\pm)-Asterisca-3(15),6-diene and (\pm)-Pentalenene using $\operatorname{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition

Xiaohui Fan ${ }^{\text {a,b }}$, Lian-Gang Zhuo ${ }^{\text {b }}$, Yong Qiang Tu ${ }^{\text {a }}$, Zhi-Xiang Yu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, PR China
${ }^{\mathrm{b}}$ Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, PR China

A R T I C L E I N F O

Article history:

Received 3 March 2009
Received in revised form 4 April 2009
Accepted 7 April 2009
Available online 16 April 2009

Abstract

Efficient formal syntheses of (\pm)-Asterisca-3(15),6-diene, a natural product with a bicyclo[6.3.0]undecane skeleton, and (\pm)-Pentalenene, a natural product with a tricyclo[6.3.0.0 $0^{4,8}$]undecane skeleton, have been achieved by using $\operatorname{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition. The $[(5+2)+1]$ reaction provides an expeditious approach to reach the bicyclic cyclooctenone 4, which was quickly transformed (via hydroboration then oxidation) to diketone $\mathbf{1 4}$, a key advanced intermediate for the total synthesis of (\pm)-Asterisca-3(15),6-diene. Through further transformations, $\mathbf{1 4}$ was converted to diene 18, an advanced intermediate for the total synthesis of (\pm)-Pentalenene.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Terpenoids exist widely in nature. They usually have complex carbocyclic skeletons with unusual arrays of rings and functionalities (Fig. 1), which endow them with a broad range of biological properties. ${ }^{1}$ Due to this, developing new synthetic methods and strategies for the synthesis of terpene natural products, especially those directed toward the construction of the carbocyclic skeletons presented in terpenes, is highly demanded. For example, the eightmembered carbocycle is one such skeleton found in many terpene and other natural products (e.g., Taxol). However, synthesis of eight-membered carbocycles is usually difficult due to unfavorable entropic factors and transannular interactions associated with the ring closure transition state. ${ }^{2}$ To facilitate access to natural products and potential drugs containing eight-membered rings, we recently developed a $\mathrm{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition that can efficiently synthesize eight-membered carbocycles (Scheme 1). ${ }^{3}$ This

Figure 1. Selected terpene natural products.

[^0]

Scheme 1. The $[(5+2)+1]$ cycloaddition.
$[(5+2)+1]$ reaction can also be extended to the synthesis of a linear triquinane skeleton, ${ }^{4}$ via either a tandem $[(5+2)+1] /$ aldol or a stepwise approach, as demonstrated by the total syntheses of Hirsutene and (\pm)-1-Desoxyhypnophilin from our group. ${ }^{5}$

Asterisca-3(15),6-diene and Pentalenene belong to the class of sesquiterpenes and are classified as the rare bicyclo[6.3.0]undecane family and tricyclo[6.3.0.0 ${ }^{4,8}$] system, respectively. Since their isolation, ${ }^{6}$ intensive efforts have been directed toward syntheses of these structurally intriguing molecules, ${ }^{7-11}$ but only limited methodologies are available for the rapid acquisition of these allcarbon natural products. As a part of our ongoing research program syntheses of natural products using the $\mathrm{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition, we report herein a new general approach to synthesize (\pm)-Asterisca-3(15),6-diene and (\pm)-Pentalenene.

2. Retrosynthetic plan

Our synthetic strategy (Scheme 2) was inspired by the pioneering work accomplished by Mehta's group and Pattenden's group. ${ }^{7,8 a}$ We envisaged that both (\pm)-Asterisca-3(15),6-diene and

Scheme 2. Retrosynthetic analysis.
(\pm)-Pentalenene can be accessed from trans-fused unsymmetric diketone 14, which could be obtained from a cis-fused unsymmetric diketone $\mathbf{1 5}$ through an acid or base induced isomerization. The central transformation in our synthesis plan is to regioselectively introduce a hydroxyl group at the C-1 position of the intermediate 4. To realize this conversion, several standard methodologies, for example, epoxide opening reaction, hydro-boration-oxidation, and oxymercuration-demercuration reaction, would give us flexible approaches. One salient feature of this synthetic plan is that the key advanced intermediate, the bicyclic cyclooctenone 4, can be expeditiously obtained from ene-vinylcyclopropane (ene-VCP) $\mathbf{3}$ using $[(5+2)+1]$ cycloaddition. Another feature of the synthetic plan is that both target natural products can be synthesized through a common advanced intermediate, the unsymmetric diketone 14.

3. Results and discussion

Our synthesis started with the preparation of the bicyclic cyclooctenone $\mathbf{4}$ (Scheme 3). ${ }^{5 \mathrm{~b}}$ Commercially available aldehyde $\mathbf{1}$ was converted to ene-VCP $\mathbf{3}$ in two steps (the $Z \mid E$ ratio of $\mathbf{3}$ is 1:1.3, the Z - and E-isomers cannot be separated by column chromatography on silica gel). Compound $\mathbf{3}$ was then transformed to the bicyclic cyclooctenone $\mathbf{4}$ as a single cis-diastereomer with a reaction yield of 65% under the optimal $\operatorname{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition conditions (balloon pressured mixed gas of 0.2 atm $\mathrm{CO}+0.8 \mathrm{~atm} \mathrm{~N}_{2}, 5 \mathrm{~mol} \%\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ as catalyst, dioxane as solvent,

$\xrightarrow{\begin{array}{c}\text { Balloon pressured mixed gas } \\ \left(0.2 \text { atm } \mathrm{CO}+0.8 \text { atm } \mathrm{N}_{2}\right) \\ 5 \mathrm{~mol} \%\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2} \text {, dioxane } \\ 0.05 \mathrm{M}, 90^{\circ} \mathrm{C}\end{array}}$

Scheme 3.

$\left.90^{\circ} \mathrm{C}\right)$. The high stereoselectivity in the $[(5+2)+1]$ cycloaddition is consistent with our previous observations. ${ }^{3}$

3.1. Studies on the regioselective introduction of a hydroxyl group to intermediate 4

With the key intermediate bicyclic cyclooctenone $\mathbf{4}$ in hand, our attention was directed to introducing a hydroxyl group at C-1 through functionalization of the double bond in 4 regioselectively. First, we explored the feasibility of regiocontrolled opening of the epoxide 6, which was obtained in two steps from protection of the carbonyl in $\mathbf{4}$ by glycol, and epoxidation of ketal 5 with m-CPBA (Scheme 4). We reasoned that due to steric bulk sodium phenylselenide would attack the epoxide $\mathbf{6}$ at the less hindered C-2 position to give the desired β-hydroxyl selenide product. To our disappointment, the sodium phenylselenide attacked at the C-1 position to give the undesired selenide $\mathbf{7}$ as the sole product in 94% yield. The stereo- and regiochemistry of 7 was assigned by chemical correlation and details are given in the Supplementary data. ${ }^{12}$ Currently, the reason for this regioselectivity is not clear.

Next, an oxymercuration-demercuration process was explored (Scheme 5). Unfortunately, such a strategy failed to direct oxymercuration of either $\mathbf{4}$ or $\mathbf{5}$ to the desired products. Therefore, the TBS protected ether $\mathbf{9}$ was prepared by sequential stereoselective reduction of the carbonyl group in 4 with L-selectride and protection of the secondary alcohol 8 to its TBS ether. Surprisingly, treatment of 9 with mercury(II) trifluoroacetate in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, followed by reduction of the resulting organomercurials with basic aqueous NaBH_{4} gave the undesired alcohol $\mathbf{1 0}$ as a single diastereoand regioisomer in 85% yield. The structure of $\mathbf{1 0}$ was unambiguously confirmed by its conversion to diol 11, whose structure has been determined by X-ray analysis in our previous work. ${ }^{5 \mathrm{~b}}$ However, continued efforts to reverse this regioselectivity proved to be unsuccessful. Here we want to point out that $\mathbf{1 1}$ is an advanced intermediate for the synthesis of Hirsutene and the synthetic route from 4 to 11 represents another approach for the formal synthesis of Hirsutene. ${ }^{5 \mathrm{~b}}$ Finally, hydroboration-oxidation reaction was tested. A series of boron reagents $\left(\mathrm{BH}_{3} \cdot \mathrm{THF}, 9-\mathrm{BBN}\right.$, Evans' rhodium-catalyzed procedure with catecholborane ${ }^{13}$) were tried with the ketal 5 and TBS ether 9 . The best result was obtained

Scheme 5.

Scheme 6.

Scheme 7.
from the reaction of ketal $\mathbf{5}$ with BH_{3}. THF complex in THF (Scheme 6). After a standard oxidative alkaline workup with $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$, secondary alcohols 12a and 12b were obtained in high yield as a 3:2 mixture of regioisomers. ${ }^{14}$ These two compounds were readily separated by column chromatography on silica gel. Attempts to run this reaction at lower temperature did not improve the regioselectivity.

3.2. Formal syntheses of (\pm)-Asterisca-3(15),6-diene and (\pm)-Pentalenene

After the above studies, we began our journey of synthesis toward (\pm)-Asterisca-3(15),6-diene and (\pm)-Pentalenene. Synthesis of (\pm)-Asterisca-3(15),6-diene was commenced with alcohol 12b (Scheme 7). Oxidation of 12b by PCC afforded ketone 13 in 92% yield. To our delight, treatment of $\mathbf{1 3}$ with $10 \% \mathrm{HCl}$ in THF not only recovered the carbonyl group, but also induced a cis to trans isomerization to generate the desired trans-diketone 14 quantitatively. Interestingly, the cis-diketone $\mathbf{1 5}$ could also be obtained through a molecular iodine-catalyzed deprotection procedure (Scheme 8). ${ }^{15,16}$ Compound 14 has been transformed to (\pm)-Aster-isca-3(15),6-diene by Mehta's group in three steps. ${ }^{7,16}$ Therefore, a concise and step-economy formal synthesis of (\pm)-Asterisca-3(15),6-diene was achieved from commercially available compound $\mathbf{1}$ to 14 in seven steps with an overall yield of 14%. To the best of our knowledge, our approach represents the second route for the synthesis of this 5,8 -ring fused sesquiterpene.

Now, our effort was focused on synthesis of (\pm)-Pentalenene (Scheme 9). Regioselective Wittig olefination of 14 afforded ketoolefin 16, followed by methylation of 16 with methyllithium and dehydration with thionyl chloride and pyridine to obtain diene 18

Scheme 8.

Scheme 9.
in 71% yield for two steps. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 8}$ exactly match those reported by Pattenden and Teague. ${ }^{8 \mathrm{a}}$ Diene $\mathbf{1 8}$ has been used as an advanced intermediate for total synthesis of (\pm)-Pentalenene by Pattenden and others ${ }^{8}$ through RhCl_{3}-catalyzed alkene isomerization and boron trifluoride promoted transannular cyclization. Therefore, the present work represents a formal synthesis of branched triquinane (\pm)-Pentalenene from 1 to $\mathbf{1 8}$ with an overall yield of 7% in 10 steps.

4. Conclusion

In summary, short and efficient formal syntheses of terpenoids of (\pm)-Asterisca-3(15),6-diene and (\pm)-Pentalenene have been achieved by utilizing the trans-fused diketone 14 as a common intermediate. The key common strategy-level step for these syntheses was the $\operatorname{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition, which proved to be an efficient method for rapid construction of the core skeleton of some 5,8 -ring fused and $5,5,5$-ring fused natural products. Further development and application of the [(5+2)+1] cycloaddition in natural product synthesis are underway in our group.

5. Experimental section

5.1. General

Air and moisture sensitive reactions were carried out in ovendried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via an oven-dried syringe. Tetrahydrofuran, diethyl ether, benzene, and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane was distilled from CaH_{2} prior to use. Dioxane (extra dry, water $<50 \mathrm{ppm}$) was commercially available and used as received. Chemical reagents were used as received without further purification, unless otherwise indicated. NMR spectra were measured on Varian Mercury $200\left({ }^{1} \mathrm{H}\right.$ at $200 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 50 MHz), Varian Mercury Plus $300\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $75 \mathrm{MHz})$, and Bruker ARX400 (${ }^{1} \mathrm{H}$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz) nuclear magnetic resonance spectrometers. Infrared spectra were recorded on an AVATAR 330 Fourier transform spectrometer (FTIR) with an OMNI sampler and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded on VG-ZAB-HS (EI, 70 eV) and Bruker APEX IV (ESI) mass spectrometers.

5.2. (\pm)-(1R, $8 R)-10,10-$ Dimethylbicyclo[6.3.0]undec-6-en-3-one (4)

$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(47 \mathrm{mg}, 0.12 \mathrm{mmol})$ was charged in a base-washed, oven-dried Schlenk flask under an atmosphere of nitrogen, and
then a solution of the $Z \mid E$ mixture of ene-VCP substrate $\mathbf{3}(400 \mathrm{mg}$, 2.4 mmol) in degassed dioxane (50 mL) was added. The solution was bubbled with the mixed CO gas ($0.2 \mathrm{~atm} \mathrm{CO}+0.8 \mathrm{~atm} \mathrm{~N}_{2}$) for 5 min . The reaction mixture was then stirred at $90^{\circ} \mathrm{C}$ under the balloon pressured mixed gas of 0.2 atm CO and $0.8 \mathrm{~atm} \mathrm{~N}_{2}$ for 120 h . After being cooled to room temperature, the mixture was concentrated and the residue was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate 80:1) to afford the cycloaddition product $4(304 \mathrm{mg}, 65 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.0(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.16-1.20(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J=7.9$ and $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.34$ (m, $4 \mathrm{H}), 2.42-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.82(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.82-5.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 214.2, 135.4, 128.2, $47.5,47.4,46.2,43.9,40.3,39.6,37.6,31.6,31.4,23.5$. FTIR: $\nu=2951$, 2930, 2865, 1701, 1383, $1365 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%)=192\left(\mathrm{M}^{+}, 50\right)$, 177 (50), 151 (40), 135 (30), 107 (40), 93 (50), 83(100), 55 (65); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}: 192.1514$, found: 192.1516.

5.3. $(\pm)-(Z)-(1 R, 8 R)-10,10-$ Dimethylbicyclo[6.3.0]undec-6-en-3-one ethylene glycol ketal (5)

To a stirred solution of $4(800 \mathrm{mg}, 4.2 \mathrm{mmol})$ in 35 mL benzene were added glycol ($9.4 \mathrm{~mL}, 168 \mathrm{mmol}$) and PTSA hydrate (160 mg , 0.84 mmol). The resulting mixture was refluxed for 20 h . Then the reaction mixture was cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}$, quenched by addition of 5 mL aqueous NaHCO_{3}. The aqueous layer was separated and the organic phase was washed successively with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate $50: 1$) to afford $5(968 \mathrm{mg}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 0.94 (s, 3H), 1.03 (s, 3H), 1.13 (t, J=12.6 Hz, 1H), 1.38 (m, 2H), 1.65 (dd, $J=9.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ (m, 2H), 2.03 (dd, $J=11.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}$, $1 \mathrm{H}), 3.52(\mathrm{~m}, 4 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): 24.9, 30.9, 31.5, 36.9, 37.3, 39.5, 39.9, 40.5, 49.0, 49.5, 63.9, 64.6, 112.1, 130.2, 134.2; FTIR: $\nu=2951,2865,1737,1463,1366,1111$, $1055 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2}$ calcd 237.1849, found 237.1846.

5.4. ($\pm)-(1 R, 7 R, 8 R)-10,10$-Dimethyl-7-hydroxybicyclo[6.3.0]-undecan-3-one ethylene glycol ketal (12b)

To a stirred solution of 5 ($927 \mathrm{mg}, 3.9 \mathrm{mmol}$) in 25 mL anhydrous THF under argon was added $\mathrm{BH}_{3} \cdot \mathrm{THF}$ (9.8 mL , 1 M in THF, 9.8 mmol) slowly at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h , then $3 \mathrm{M} \mathrm{NaOH}(7 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(7 \mathrm{~mL})$ were added very slowly. The resulting mixture was stirred at room temperature for 30 min and diluted with 100 mL of ethyl acetate. After separation of the aqueous layer, the organic phase was washed with brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate 8:1 to 3:1) to afford $\mathbf{1 2 a}(566 \mathrm{mg}$) as a white solid and $\mathbf{1 2 b}(377 \mathrm{mg})$ as a colorless film in 95% yield (ca. $\mathbf{1 2 a} / \mathbf{1 2 b}=3: 2$). Compound 12b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 0.91 (s , $3 \mathrm{H}), 0.92(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.56$ $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.87(\mathrm{~m}, 6 \mathrm{H}), 1.97-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.60$ (quintet, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.53(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 19.2, $28.2,30.3,35.3,36.0,36.3,40.1,40.9,46.5,48.0,52.8,64.25,64.32$, 72.1, 111.6; FTIR: $\nu=3448,2949,2931,2866,1462,1364 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}$ calcd 277.1774, found 277.1773. Compound 12a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.05$ (m, 2H), 1.42-1.74 (m, 8H), 1.85 (dt, $J=14.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (dd, $J=11.3,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (dd, $J=10.1,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 3.52$ (m, 4H), $3.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 27.5, 29.4, 30.0, $30.4,31.9,35.6,36.6,37.2,39.4,51.7,51.9,64.2,64.4,69.3,111.8$.

FTIR: $\nu=3426,2947,2927,2868,1463,1365 \mathrm{~cm}^{-1}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}$ calcd 277.1774, found 277.1772. $\mathrm{Mp} 84-86^{\circ} \mathrm{C}$.

5.5. ($\pm)-(1 R, 8 R)$-10,10-Dimethyl-7-oxobicyclo[6.3.0]undecan-3-one ethylene glycol ketal (13)

To a stirred solution of $\mathbf{1 2 b}(190 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $10 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was added PCC ($323 \mathrm{mg}, 1.5 \mathrm{mmol}$) at room temperature. The resulting mixture was stirred for 3 h , then diluted with $10 \mathrm{mLEt}_{2} \mathrm{O}$. The suspension was filtered through an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate 100:1 to 80:1) to afford $\mathbf{1 3}(173 \mathrm{mg}, 92 \%)$ as a colorless film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.98 (s, 3H), 1.09 (s, 3H), 1.26 (t, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.43-1.58$ (m, 4H), 1.73 (m, 2H), 1.91-2.07 (m, 3H), 2.31 (ddd, J=4.1, $9.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (ddd, $J=4.4,9.7,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (m, 1H), $3.44(\mathrm{dt}, J=10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.96(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): 19.4, 27.6, 28.6, 36.2, 37.6, 37.9, 39.0, 43.6, 47.3, 49.7, 50.8, 64.0, 64.5, 110.9, 216.3; FTIR: $\nu=2951,2866,1968,1460,1364$, $1099 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}(\mathrm{ESI})[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}$ calcd 275.1618, found 275.1615.

5.6. (\pm)-(1S,8R)-10,10-Dimethylbicyclo[6.3.0]undecan-2,6dione (14)

To a stirred solution of $\mathbf{1 3}$ ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$) in 25 mL THF was added $21 \mathrm{~mL} 10 \% \mathrm{HCl}$ at room temperature. The resulting mixture was stirred at room temperature for 36 h , then 22 mL 3 M aqueous NaOH was added and the resulting mixture was diluted with $120 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. After separation of the aqueous layer, the organic layer was washed with water and brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate $3: 1$) to afford $\mathbf{1 4}(329 \mathrm{mg}, 99 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.07(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.60 (dd, $J=7.6,12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.81-1.87 (m, 2H), 2.07 (m, 1H), 2.28$2.59(\mathrm{~m}, 8 \mathrm{H}), 2.91(\mathrm{dt}, J=7.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): 21.5, 30.9, 31.4, 36.6, 42.6, 42.9, 43.4, 44.5, 46.8, 49.5, 56.2, 211.8, 213.7; FTIR: $\nu=2952,2863,1696,1462,1363,1250 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}$ calcd 231.1356, found 231.1354. Mp 95-97 ${ }^{\circ} \mathrm{C}$.

5.7. (\pm)-($1 S, 8 R$)-10,10-Dimethyl-6-methylidene-bicyclo[6.3.0]undecan-2-one (16)

To a stirred suspension of methyl triphenylphosphonium bromide ($257 \mathrm{mg}, 0.72 \mathrm{mmol}$) in 5 mL anhydrous benzene was added solid $\mathrm{KO}^{t} \mathrm{Bu}$ ($65 \mathrm{mg}, 0.58 \mathrm{mmol}$) under argon. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 40 min , then cooled to room temperature. A solution of $\mathbf{1 4}(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ in 4 mL benzene was added dropwise, the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 3.5 h , then cooled to room temperature, quenched by addition of 3 mL water, and diluted with $15 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. After separation of aqueous layer, the organic phase was washed with water and brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate $50: 1$) to afford $\mathbf{1 6}(72 \mathrm{mg}, 73 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $0.93(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{dd}$, $J=7.6,13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.50$ (dd, $J=7.0,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.91$ (dd, $J=11.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.99$ (m, 1H), 2.02-2.10 (m, 2H), 2.23 (m, 2H), $2.53(\mathrm{dt}, J=7.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 23.9, 31.3, 31.7, 36.5, 36.8, 39.7, 42.2, 44.6, 48.3, 49.5, 55.4, 115.6, 147.1, 212.2; FTIR: $\nu=3066,2947,2857,1691$, 1450, $1220 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}$ calcd 207.1743, found 207.1744. Mp $65-67{ }^{\circ} \mathrm{C}$.

5.8. (\pm)-(1S,8R)-6-Methylidene-2,10,10-trimethyl-bicyclo[6.3.0]undecan-2-ol (17)

To a stirred solution of $\mathbf{1 6}(37 \mathrm{mg}, 0.18 \mathrm{mmol})$ in 4 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was added $\mathrm{CH}_{3} \mathrm{Li}(0.17 \mathrm{~mL}, 1.6 \mathrm{M}, 0.27 \mathrm{mmol})$ under argon at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h , then quenched by addition of 4 mL water and diluted with $15 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. After separation of the aqueous layer, the organic phase was washed with water and brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with petroleum ether/ethyl acetate $30: 1$) to afford 17 ($33 \mathrm{mg}, 83 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $0.98(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.13$ (ddd, $J=1.7,5.2,12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.91-2.01(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=5.4,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 22.5, 29.1, 29.5, 29.9, 36.1, 37.7, 38.0, 39.6, 43.9, 46.6, 50.2, 51.0, 72.1, 114.1, 149.3; FTIR: $\nu=3472,2932$, 2865, 1446, $1364 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{ONa}$ calcd 245.1876, found 245.1875 .

5.9. (\pm)-6-Methylidene-2,10,10-trimethylbicyclo[6.3.0]-undec-1-ene (18)

To a stirred solution of $17(30 \mathrm{mg}, 0.14 \mathrm{mmol})$ in 2 mL pyridine was added $\mathrm{SOCl}_{2}(20 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h , then quenched by addition of 2 mL cold water and diluted with $15 \mathrm{mLEt}_{2} \mathrm{O}$. After separation of the aqueous layer, the organic phase was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography on silica gel (eluted with pentane) to afford 18 ($23 \mathrm{mg}, 85 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $0.84(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.58$ (m, 2H), 1.61 (m, 3H), 1.70-1.85 (m, 4H), $1.96(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (dd, $J=1.5,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dd, $J=5.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dd, $J=3.7$, $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J=5.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H})$, $4.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, C ${ }_{6} \mathrm{D}_{6}$): 19.0, 27.3, 27.4, 28.9, 31.5, $32.2,37.3,41.8,45.0,49.1,49.5,111.9,125.4,139.9,150.6$.

Acknowledgements

We thank Peking University, the National Natural Science Foundation of China (20825205-National Science Fund for Distinguished Young Scholars, 20521202, and 20672005), and the Ministry of Education of China for financial support. We thank Dr. Andrew A. Leach of AstraZeneca for help in English.

Supplementary data

Experimental procedures, spectral data $\left({ }^{1} \mathrm{H}\right.$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, HRMS), and copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR for all compounds described in the paper. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2009.04.020.

References and notes

1. Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.
2. (a) Yet, L. Chem. Rev. 2000, 100, 2963; (b) Michaut, A.; Rodriguez, J. Angew. Chem., Int. Ed. 2006, 45, 5740; (c) Sieburth, S. M.; Cunard, N. T. Tetrahedron 1996, 52, 6251; (d) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881; (e) Wender, P. A.; Croatt, M. P.; Deschamps, N. M. In Comprehensive Organometallic Chemistry III; Ojima, I., Ed.; Elsevier: 2007; Vol. 10, pp 603-648; (f) Petasis, N. A.; Patane, M. A. Tetrahedron 1992, 48, 5757.
3. Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.
4. Reviews of triquinanes: (a) Mehta, G.; Srikrishna, A. Chem. Rev. 1997, 97, 671; (b) Paquette, L. A.; Doherty, A. M. Polyquinane Chemistry; Springer: Berlin, Germany, 1987; (c) Paquette, L. A. Top. Curr. Chem. 1984, 119, 1; (d) Trost, B. M. Chem. Soc. Rev. 1982, 11, 141; (e) Paquette, L. A. Top. Curr. Chem. 1979, 79, 41.
5. (a) Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 4421; (b) Fan, X.; Tang, M.; Zhuo, L.; Tu, Y. Q.; Yu, Z.-X. Tetrahedron Lett. 2009, 50, 155.
6. (a) Fricke, C.; Hardt, I. H.; Konig, W. A.; Joulain, D.; Zygadlo, J. A.; Guzman, C. A. J. Nat. Prod. 1999, 62, 694; (b) Seto, H.; Yonehara, H. J. Antibiot. 1980, $33,92$.
7. Mehta, G.; Srikrishna; Umarye, J. D. Tetrahedron Lett. 2001, 42, 8101.
8. (a) Pattenden, G.; Teague, S. J. Tetrahedron 1987, 43, 5637; (b) Ishii, S.; Zhao, S.; Mehta, G.; Knors, C. J.; Helquist, P. J. Org. Chem. 2001, 66, 3449.
9. (a) Pallerla, M. K.; Fox, J. M. Org. Lett. 2007, 9, 5625; (b) Paquette, L. A.; Annis, G. D. J. Am. Chem. Soc. 1983, 105, 7358; (c) Paquette, L. A.; Geng, F. Org. Lett. 2002, 4, 4547; (d) Pattenden, G.; Teague, S. J. Tetrahedron Lett. 1984, 25, 2621; (e) Har-rington-Frost, N. M.; Pattenden, G. Tetrahedron Lett. 2000, 41, 403; (f) De Boeck, B.; Harrington-Frost, N. M.; Pattenden, G. Org. Biomol. Chem. 2005, 3, 340; (g) Morimoto, T.; Horiguchi, T.; Yamada, K.; Tsutsumi, K.; Kurosawa, H.; Kakiuchi, K. Synthesis 2004, 753; (h) Piers, E.; Karunaratne, V. J. Chem. Soc., Chem. Commun. 1984, 959; (i) Piers, E.; Karunaratne, V. Can. J. Chem. 1989, 67, 160; (j) Crimmins, M. T.; Deloach, J. A. J. Am. Chem. Soc. 1986, 108, 800.
10. (a) Mehta, G.; Rao, K. S. J. Chem. Soc., Chem. Commun. 1985, 1464; (b) Mehta, G.; Rao, K. S. J. Am. Chem. Soc. 1986, 108, 8015; (c) Hua, D. H. J. Am. Chem. Soc. 1986, 108, 3835; (d) Imanishi, T.; Ninbari, F.; Yamashita, M.; Iwata, C. Chem. Pharm. Bull. 1986, 34, 2268; (e) Imanishi, T.; Yamashita, M.; Hirokawa, Y.; Tanaka, T.; Iwata, C. Chem. Pharm. Bull. 1990, 38, 1124; (f) Hudlicky, T.; Natchus, M. G.; Sinai-Zingde, G. J. Org. Chem. 1987, 52, 4641; (g) Hudlicky, T.; Sinai-Zingde, G.; Natchus, M. G.; Ranu, B. C.; Papadopolous, P. Tetrahedron 1987, 43, 5685; (h) Rowley, E. G.; Schore, N. E. J. Org. Chem. 1992, 57, 6853; (i) Ihara, M.; Katogi, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1988, 2963; (j) Shizuri, Y.; Maki, S.; Ohkubo, M.; Yamamura, S. Tetrahedron Lett. 1990, 31, 7167; (k) Wu, Y.-J.; Burnell, D. J. J. Chem. Soc., Chem. Commun. 1991, 764.
11. (a) Miesch, M.; Miesch-Gross, L.; Franck-Neumann, M. Tetrahedron 1997, 53, 2111; (b) Hatanaka, M.; Ueno, F.; Ueda, I. Tetrahedron Lett. 1996, 37, 89; (c) Kim, S.; Cheong, J. H.; Yoo, J. Synlett 1998, 981; (d) Jurlina, J. L.; Patel, H. A.; Stothers, J. B. Can. J. Chem. 1984, 62, 1159; (e) Baker, R.; Keen, R. B. J. Organomet. Chem. 1985, 285, 419; (f) Zhao, S. K.; Mehta, G.; Helquist, P. Tetrahedron Lett. 1991, 32, 5753; (g) Lange, G. L.; Gottardo, C. J. Org. Chem. 1995, 60, 2183; (h) Seo, J.; Fain, H.; Blanc, J.-B.; Montgomery, J. J. Org. Chem. 1999, 64, 6060; (i) Tormo, J.; Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem. 1997, 62, 4851; (j) Cane, D. E.; Oliver, J. S.; Harrison, P. H. M.; Abell, C.; Hubbard, B. R.; Kane, C. T.; Lattman, R. J. Am. Chem. Soc. 1990, 112, 4513.
12. The stereochemistry of $\mathbf{7}$ was determined by the crystal structure of the epoxide we have reported, see Ref. 5b. The regiochemistry of 7 was assigned upon its three-step transformations, see Supplementary data for details.
13. (a) Evans, D. A.; Gage, J. R. J. Org. Chem. 1992, 57, 1958; (b) Detailed results can be seen in Supplementary data.
14. Compound 7 can be transformed to compound 12a after elimination of the phenylselenyl moiety with Raney Ni. Therefore, the stereochemistry of 12a and 12b was assigned based on the structure of 7 , see Supplementary data for details.
15. Sun, J.; Dong, Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y. J. Org. Chem. 2004, 69, 8932.
16. The cis-diketone $\mathbf{1 5}$ can also be isomerized to trans-diketone $\mathbf{1 4}$ quantitatively under acidic condition ($10 \% \mathrm{HCl}, \mathrm{THF}$). In Mehta's work, they reported the same transformation induced by base ($\mathrm{KO}^{t} \mathrm{Bu}, \mathrm{THF},{ }^{t} \mathrm{BuOH}$), but the trans-diketone 14 was found to be in equilibrium with its cis-isomer 15 ($\mathbf{1 4}$ / $15=4: 1$).

[^0]: * Corresponding author. Tel./fax: +86 1062767735.

 E-mail address: yuzx@pku.edu.cn (Z.-X. Yu).

