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Abstract: With the aid of computation and experiment, the phos-
phine- and water-cocatalyzed [3+2] cycloaddition reactions of 2-
methyl-2,3-butadienoate with fumarates have been developed. In
this reaction, 2-methyl-2,3-butadienoate is used as a three-carbon
synthon generated through a water-catalyzed [1,4]-proton-shift pro-
cess. The DFT calculations and isotopic labeling experiment have
been done to explore how this [3+2] reaction occurs.

Key words: phosphine, water, organocatalysis, density functional
calculations, reaction mechanisms

The Lu phosphine-catalyzed [3+2] cycloaddition reac-
tions of 2,3-butadienoates or 2-butynoates with unsaturat-
ed electrophiles are very efficient for the construction of
five-membered carbocycles and heterocycles,1–3 which
exist as the backbones of many natural products and other
compounds of pharmaceutical significance. Recently, we
reported a computational and experimental investigation
into the detailed mechanisms of these [3+2] reactions.4

One of the most important findings from these mechanis-
tic studies is that the widely accepted intramolecular
[1,2]-proton shift should be corrected to a water-catalyzed
[1,2]-proton shift (Scheme 1), since the intramolecular
[1,2]-proton shift is a 4-electron-2-orbital interaction pro-
cess with an insurmountable energy barrier. Here we wish
to report another discovery that water is also critical for
the [3+2] cycloaddition of 2-methyl-2,3-butadienoate and
fumarate, where 2-methyl-2,3-butadienoate acts as a
three-carbon synthon generated through a water-catalyzed
[1,4]-proton-shift process.

Based on the mechanistic insights into the Lu [3+2] reac-
tion, we hypothesized that, if 2-methyl-2,3-butadienoate
instead of 2,3-butadienoate was used under the cocatalysis
of phosphine and water, the Lu [3+2] reaction was not ex-
pected to occur since the required hydrogen in the [1,2]-
proton-shift step was replaced by a methyl group. We test-
ed this hypothesis experimentally by carrying out the
reaction of methyl 2-methyl-2,3-butadienoate (1) and
dimethyl fumarate (2) with stoichiometric amounts of
triphenylphosphine and water at 80 °C for 12 hours in

benzene (Scheme 2). To our surprise, a new [3+2] cyclo-
adduct 3 was obtained in 24% yield. However, when a
control experiment without water was run, only a trace
amount of 3 was detected (Scheme 2), suggesting that
water played an important catalytic role in this new [3+2]
reaction. To obtain more information about the mecha-
nism of this [3+2] reaction, an isotopic labeling experi-
ment was also conducted. It was found that, when one
equivalent of D2O was added to the reaction system, 3-
CH2D-substituted [3+2] product was generated with a ra-
tio of 42% (Scheme 2).5 The success of this [3+2] reaction
indicates that 2-methylallenoate can be used as a three-
carbon synthon. This is the first report of 2-methylallen-
oate as a three-carbon synthon. Previously 2-methylallen-
oate was used as either a two-carbon synthon or a four-
carbon synthon.6,7

How does 2-methylallenoate act as a three-carbon syn-
thon? We thought that water-catalyzed [1,4]-proton-shift
process was responsible for this and proposed a mecha-
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nism of phosphine- and water-cocatalyzed [3+2] reaction
of 2-methylallenoate and fumarate (Scheme 3). The cata-
lytic cycle starts with the formation of a zwitterionic inter-
mediate A, generated from 2-methylallenoate and the
phosphine catalyst. Then a water-catalyzed [1,4]-proton
shift converts A into another zwitterionic intermediate B,
which reacts with fumarate to form five-membered inter-
mediate C. Finally, the [3+2] product is generated from C
through the elimination of the phosphine catalyst.

The above mechanism, especially the detailed process of
water-catalyzed [1,4]-proton shift, was further supported
by the density functional theory (DFT) calculations.8

Structural optimization and single-point energy calcula-
tions were obtained at the B3LYP/6-31+G(d) level,9,10

and solvent effects were computed using the CPCM mod-
el.11 The computed energy surface is given in Figure 1,
and the optimized structures are shown in Figure 2. All
discussed energies below are enthalpies in benzene unless
specified.

We chose the addition of trimethylphosphine (8) to meth-
yl 2-methyl-2,3-butadienoate (1) with a cocatalyst water
as the model for the DFT investigation. Calculations indi-

cate that the formation of the zwitterionic 1,3-dipole 9 is
exothermic by 2.3 kcal mol–1 in terms of enthalpy, but is
endergonic by 11.7 kcal mol–1 owing to entropy loss in

Scheme 1 Phosphine-catalyzed [3+2] reaction of allenoates and electron-deficient alkenes (only the major regioisomer is given; E = electron-
withdrawing group)
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Scheme 3 Proposed mechanism for phosphine- and water-cocata-
lyzed [3+2] reaction of 2-methylallenoate and fumarate
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this process. The activation enthalpy for this nucleophilic
addition is 18.0 kcal mol–1 and its activation free energy is
29.9 kcal mol–1. The forming P–C bond distance in the ad-
dition transition-state structure TS1 is 2.42 Å, and the
formed P–C bond length in 9 is 1.83 Å (Figure 2).

Through a [1,4]-proton-shift step, 1,3-dipole 9 can be
transformed to a new zwitterion 13 (Figure 1). The in-
tramolecular concerted [1,4]-proton-shift process is high-
ly energy demanding with an activation enthalpy of 38.5
kcal mol–1. In contrast, a water-catalyzed [1,4]-proton
shift is much easier. This water-catalyzed process starts
with the formation of complex 10 between 9 and water,
with a reaction enthalpy of –2.8 kcal mol–1. The conver-
sion of 10 into 11 via proton-transfer transition state TS3
requires 13.9 kcal mol–1 of activation enthalpy. In TS3,
the breaking O–H and the forming C–H distances are 1.52
and 1.21 Å, respectively (Figure 2). In intermediate 11,
the in situ generated hydroxide anion coordinates to the
phosphorus atom. Through another proton-transfer transi-
tion state TS4, in which the breaking C–H distance is 1.24
Å and the forming O–H distance is 1.50 Å (Figure 2),
complex 12 is generated from 11. This step requires an ac-
tivation enthalpy of 20.7 kcal mol–1. Dissociation of water
from 12 leads to the formation of zwitterion 13, which is
exergonic by 6.4 kcal mol–1 in terms of free energy in ben-
zene.12 The zwitterion 13 can then undergo the [3+2]
reaction shown in Scheme 3 to give the final cycloadduct
3.

The above computational studies reveal a reasonable reac-
tion pathway for the generation of zwitterionic intermedi-
ate 13 from methyl 2-methyl-2,3-butadienoate (1) in the
presence of phosphine and water. The computed activa-

tion enthalpy in benzene of the whole process is 23.9 kcal
mol–1 (from the most stable intermediate 10 to the highest
transition state TS4, Figure 1). TS4 is the rate-determin-
ing transition state of the present [3+2] reaction. In terms
of activation free energy, the whole process requires an
activation free energy of 44.2 kcal mol–1, which is much
overestimated due to the overestimation of the entropy
loss for the multicomponent reaction.13  According to our
previous kinetic studies on the phosphine-catalyzed Lu
[3+2] reaction, the entropic contribution in solution is
about 60% of the computed gas-phase value for a tri-
molecualr process.4b Thus, we assume that the entropic
contribution in solution is also about 60% of the computed
gas phase value for this process. Therefore, the estimated
activation free energy in benzene of this reaction could be
about 36 kcal mol–1. This energy barrier well explained
why the present [3+2] reaction had to be conducted at a
relatively high temperature, with a high catalyst loading,
and for a long reaction time.

After optimization of the reaction conditions, the yield of
product 3 was improved to 46% when the reaction was run
at 90 °C in toluene for 12 hours under the cocatalysis of 1
equivalent of Ph3P and 2 equivalents of H2O (Scheme 4).
When other fumarates were used, the corresponding [3+2]
products were also obtained in moderate yields
(Scheme 4). Unfortunately, extensive experimental
screening to expand this [3+2] reaction revealed that other
electron-deficient alkenes, such as acrylate, vinyl ketone,
and maleate, were not suitable for this [3+2] reaction. The
failure to expand this reaction could be due to the fact that
many unknown side reactions are very competitive in the
reaction system.

Figure 1 DFT-computed energy surface for the formation of 9 and its conversion into 13 (R = Me; DHsol and DGsol are the computed relative
enthalpies and free energies in benzene solution, while DH298 is the computed relative enthalpies in the gas phase)

TS1

CO2Me

0.0
(0.0)
[0.0]

–2.3
(–0.4)
[11.7]

+

1 8
9

18.0
(17.7)
[29.9]

3.3
(4.5)
[17.5]

13

PR3

CO2Me

H

TS2

36.2
(39.3)
[51.6]

10

11

12

TS3

TS4

–5.1
(–6.1)
[17.6]

H

8.8
(10.0)
[34.0] –1.9

(–2.9)
[22.3]

18.8
(21.2)
[44.2]

CO2Me

2.0
(0.4)
[23.9]

R3P

ΔHsol
(ΔH298)
[ΔGsol]

kcal mol–1

CO2Me

PR3

CO2Me

H

PR3

CO2Me

H

PR3

H
HO

H2O

CO2Me

H

PR3

CO2Me

H

PR3

H
HO

H

PR3

H

HO

HOH

PR3

CO2Me

H
H

OH

PR3

CO2Me

H
H

OH

H



908 Y. Liang et al. LETTER

Synlett 2009, No. 6, 905–909 © Thieme Stuttgart · New York

In conclusion, we have reported the first example for the
[3+2] cycloaddition reaction between 2-methylallenoate
and fumarate. Through the joint forces of computation
and experiment, it is discovered that 2-methylallenoate
can be used as the three-carbon synthon under the cocatal-
ysis of thiphenylphosphine and water. Furthermore, the
detailed mechanism of water-catalyzed [1,4]-proton shift
has been verified by both DFT calculations and the isoto-
pic labeling experiment. Further investigations on other
phosphine-catalyzed reactions or water-catalyzed reac-
tions are ongoing in our laboratory.
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trans-Trimethyl 3-Methylcyclopent-3-ene-1,2,4-
tricarboxylate (3)
Colorless oil; Rf = 0.27 (PE–EtOAc, 6:1). 1H NMR (300 
MHz, CDCl3): d = 2.13 (m, 3 H), 2.90 (ddm, J = 16.5, 6.6 
Hz, 1 H), 3.08 (ddm, J = 16.5, 9.6 Hz, 1 H), 3.50 (dt, J = 9.6, 
6.6 Hz, 1 H), 3.72 (s, 3 H), 3.74 (s, 3 H), 3.77 (s, 3 H), 3.96 
(dm, J = 6.6 Hz, 1 H). 13C NMR (75.5 MHz, CDCl3): d = 
14.8, 36.0, 43.4, 51.3, 52.3, 52.4, 59.1, 128.2, 149.7, 165.3, 
172.3, 174.0. IR: n = 1717, 1735 cm–1. MS (EI): m/z (%) = 
256 (5) [M+], 224 (63), 196 (76), 164 (100). HRMS: m/z 
calcd for C12H16O6: 256.0947; found: 256.0950.
trans-1,2-Diethyl-4-methyl 3-Methylcyclopent-3-ene-
1,2,4-tricarboxylate (5)
Colorless oil; Rf = 0.37 (PE–EtOAc, 6:1). 1H NMR (300 
MHz, CDCl3): d = 1.27 (t, J = 7.2 Hz, 3 H), 1.30 (t, J = 7.2 
Hz, 3 H), 2.14 (m, 3 H), 2.88 (ddm, J = 16.5, 6.6 Hz, 1 H), 
3.08 (ddm, J = 16.5, 9.6 Hz, 1 H), 3.48 (dt, J = 9.6, 6.6 Hz, 
1 H), 3.74 (s, 3 H), 3.93 (dm, J = 6.6 Hz, 1 H), 4.14–4.27 (m, 
4 H). 13C NMR (75.5 MHz, CDCl3): d = 14.09, 14.15, 14.8, 
35.9, 43.5, 51.2, 59.3, 61.0, 61.3, 128.1, 149.9, 165.4, 171.8, 
173.6. IR: n = 1717, 1732 cm–1. MS (EI): m/z (%) = 284 (6) 
[M+], 252 (13), 238 (53), 210 (100). HRMS: m/z calcd for 
C14H20O6: 284.1260; found: 284.1257.
trans-1,2-Diallyl-4-methyl 3-Methylcyclopent-3-ene-
1,2,4-tricarboxylate (7)
Colorless oil; Rf = 0.36 (PE–EtOAc, 6:1). 1H NMR (300 
MHz, CDCl3): d = 2.14 (m, 3 H), 2.91 (ddm, J = 16.5, 6.6 
Hz, 1 H), 3.10 (ddm, J = 16.5, 9.6 Hz, 1 H), 3.54 (dt, J = 9.6, 
6.6 Hz, 1 H), 3.74 (s, 3 H), 3.99 (dm, J = 6.6 Hz, 1 H), 4.60–
4.67 (m, 4 H), 5.23–5.39 (m, 4 H), 5.85–6.00 (m, 2 H). 13C 
NMR (75.5 MHz, CDCl3): d = 14.8, 35.9, 43.5, 51.3, 59.2, 
65.6, 65.9, 118.4, 118.8, 128.2, 131.5, 131.7, 149.7, 165.3, 
171.4, 173.2. IR: n = 1717, 1733 cm–1. MS (EI): m/z (%) = 
308 (3) [M+], 276 (5), 250 (20), 222 (18), 41 (100). HRMS: 
m/z calcd for C16H20O6: 308.1260; found: 308.1252.


