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Abstract: Previously reported was that cis-ene-vinylcyclopro-
panes (cis-ene-VCPs) underwent Rh-catalyzed [5++2] reaction
to give 5,7-fused bicyclic products, where vinylcyclopropane
(VCP) acts as five-carbon synthon. Unfortunately, this reaction
had very limited scope. Replacing the 2p component of cis-ene-
VCPs to allene moiety, the corresponding cis-allene-VCPs did
not undergo the expected normal [5++2] cycloaddition to give
5,7-fused bicyclic products. Instead, the challenging bicyclo-
[4.3.1]decane skeleton was obtained via an unprecedented
bridged [5++2] cycloaddition. DFT calculations were applied to
understand why this bridged [5++2] reaction is favored over the
anticipated but not realized normal [5++2] reaction.

Seven-membered carbocycles are widely found in natural
products of biological and pharmaceutical importance. How-
ever, methods which access seven-membered carbocycles are
limited and this greatly hinders the synthesis of target
functional molecules and their analogues, and additionally
slows down the downstream study and investment of these
molecules in chemical biology, medicine, and other related
fields. Consequently, developing new methods to access
seven-membered carbocycles, which can serve as a powerful
tool to access functional molecules, has been the frontier of
reaction development in the chemical community.[1]

One of the powerful methods for synthesis of seven-
membered rings is the transition metal catalyzed [5++2]
reaction[2] between vinylcyclopropanes (VCPs) and 2p-sys-
tems.[3,4] In 1995, Wender etal. first reported the intramolec-
ular rhodium-catalyzed cycloaddition of VCPs with alky-
nes.[5a] Since then, the cycloadditions were further developed
by Wender et al. and many other groups[5–7] and the p-systems
were expanded to alkenes[8, 9] and allenes.[10] In addition, the
intermolecular cycloadditions of VCPs with p-systems[11–13]

and other transition metal catalyzed [5++2] cycloadditions[14,15]

have been reported. In 2015, Zhang replaced VCPs with vinyl
aziridines and developed the hetero-[5++2] cycloaddition[16] to
synthesize azepine derivatives.

Our group has strong interests in discovering and devel-
oping transition metal catalyzed cycloadditions, and applying
these reactions in the synthesis of natural products.[17] In 2008,
we reported the intramolecular [5++2] cycloaddition of cis-
ene-vinylcyclopropanes (cis-ene-VCPs) to afford cis-fused
bicyclic products (Scheme 1a).[18,19] However, only three

substrates for cis-ene-VCPs gave the desired [5++2] products
and other substrates failed. Considering that allenes, with
high reactivity,[12b] could also participate in the [5++2] cyclo-
additions as a 2p-component,[10,13] we wondered whether
[5++2] reaction could occur with broad substrate scope using
cis-allene-vinylcyclopropanes (cis-allene-VCPs) as substrates.
To our surprise, we did not get the anticipated fused bicyclic
product by the normal [5++2] cycloaddition. Instead, we
observed an unexpected new type of [5++2] reaction (referred
here as bridged [5++2] cycloaddition), which gave a bridged
bicyclic product (Scheme 1b).[20] Herein, we report our
experimental results of this novel bridged [5++2] cycloaddition
to synthesize the bicyclo[4.3.1]decane skeleton.[21] DFT
calculations were also conducted to explain the experimen-
tally observed regioselectivity.

We commenced our study with the NTs-tethered cis-
allene-VCP 1a (for structure see Table1) as the standard
substrate. After extensive optimization (see the Supporting
Information), we found that treatment of 1 a with [Rh-
(CO)2Cl]2 in 1,4-dioxane gave a new symmetrical bicyclo-
[4.3.1]decane cycloadduct, 2a, in 77 % yield. Here, the inner
double bond of the allene acts as the 2p component and
participates in the [5++2] cycloaddition to give the bridged ring

Scheme 1. a) Previous [5++2] cycloaddition of cis-ene-VCP. b) This work:
Unexpected bridged [5++2] cycloaddition of cis-allene-VCPs.
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skeleton, in an opposite manner compared to the previously
reported normal [5++2] cycloadditions which gave fused 5/7
and 6/7 skeletons.[22]

After obtaining the optimal reaction conditions, we began
to investigate the scope of the bridged [5++2] cycloaddition
(Table 1). First, terminally disubstituted allenes were found to
be excellent substrates (entries 1–6) and highly symmetrical
bicyclo[4.3.1]decane cycloadducts (2 a–c) were obtained when
symmetrical allenes were used (entries 1–3). For the substrate
1 f, with a phenyl substituent, the desired reaction gave
a slightly lower reaction yield after 6 hours. Substrates with

terminally monosubstituted or nonsubstituted allenes proved
to be unsuitable and these substrates decomposed slowly
when the temperature was raised to 100 88C (entries 7–9). We
reasoned that, in this case, the rhodium catalyst preferred to
coordinate at the distal double bond of the allene[23] and many
competing side reactions could happen.[24] This so called
“terminal methyl effect” was also noticed in many reac-
tions.[23b, 25]

Next, we changed the NTs tether in the substrate to NNs,
NBs, NMs, and NSO2Ph and the desired products were
delivered with good yields under the standard reaction
conditions (Table 1, entries 10–13). The bicyclo[4.3.1]decane
skeleton of the product was further confirmed by single-
crystal X-ray crystallography analysis of 2k.[26] Unfortunately,
C-tethered substrates could not be converted into the desired
bicyclo[4.3.1]decane cycloadduct and no reaction took place
even after performing this reaction at 100 88C (entry 14). The
O-tethered substrate 1o was also not suitable for this
transformation and the complex mixture was generated
when treating 1o under the standard reaction conditions
(entry 15).

We also synthesized the substrates 1p–r and examined
how the variations on the VCP moiety of the substrates
affected the reaction outcomes (entries 16–18). No reaction
occurred when substrate 1r with substitution at the cyclo-
propane moiety was used, which could be attributed to the
steric hindrance of the substrate. Substrates 1p–q with
substitution in the alkene moiety showed low reactivities so
the catalyst loading was increased to 10 mol% and the
temperature was raised to 100 88C. A mixture of the bicyclo-
[4.3.1]decane products 2p–q and bicyclo[5.3.0]decane prod-
ucts 3p–q, the originally expected normal [5++2] cycloadducts,
can be isolated for substrates 1p–q. For 1p, with bulkier
phenyl group, the product 3p was the major product and the
structure was confirmed by X-ray crystallography.[26] In stark
contrast to previous work (Scheme 1), the trans bicyclo-
[5.3.0]decane product was achieved here. Finally, we tested
a longer tether, hoping to achieve the bicyclo[4.4.1]undecane
product (Scheme 2). However no product could be observed
and the starting material was recovered.

The proposed mechanism, together with preliminary
support from DFT calculations, is given in Scheme 3. The
catalytic cycle starts with the complexation of [Rh(CO)Cl]
with the substrate, followed by cyclopropane ring cleavage at
C1@C2 to give the intermediate INT1, which has the allene
coordination and agostic interaction of methyl with the
rhodium center. When R = H, the allene moiety will fold
back and C1’ of allene will approach Cb to form INT2 a. After
insertion of the inner double bond (via TS2 a to form

Table 1: Scope of the [5++2] cycloadditions of cis-allene-VCPs.

Entry Substrate Product[a]

1 1a, R1 =R2 = Me 2a, 4 h, 80%
2 1b, R1 =R2 =-CH2(CH2)4CH2- 2b, 4 h, 73%
3 1c, R1 =R2 =Et 2c, 4 h, 73 %
4 1d, R1 = Me, R2 =Et 2d, 4 h, 80%
5 1e, R1 = Me, R2 = i-Pr 2e, 5 h, 78%
6 1 f, R1 = Me, R2 =Ph 2 f, 6 h, 62%
7 1g, R1 = H, R2 = p-C6H5Br no reaction[b]

8 1h, R1 =H, R2 =n-Pr no reaction[b]

9 1 i, R1 = R2 = H no reaction[b]

10 1 j, Z = NNs 2 j, 4 h, 78 %
11 1k, Z= NBs 2k, 7 h, 76%
12 1 l, Z =NSO2Ph 2 l, 3 h, 74%
13 1m, Z =NMs 2m, 3 h, 75 %
14 1n, Z =C(CO2Me)2 no reaction[b]

15 1o, Z = O complex mixture

16 1p, R3 =Ph, R4 =H 2p + 3p, 3 h, 70%(1:7)[c,d]

17 1q, R3 = Me, R4 = H 2q + 3q, 4 h, 76% (3:1)[c]

18 1r, R3 = H, R4 = Me no reaction[b]

The reaction was performed on a 0.2 mmol scale and 4 mL 1,4-dioxane
was used. [a] Yield given in an average of two runs. [b] Slowly
decomposed at 10088C. When cationic Rh catalyst was used, decom-
position was also observed. [c] 10 mol% catalyst loading. [d] 100 88C.
Bs = 4-bromobenzenesulfonyl, Ms =methanesulfonyl, Ns = 4-nitro-
benzenesulfonyl.

Scheme 2. Rhodium-catalyzed cycloaddition reaction of 1s with an
elongated tether.
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INT3a),[27] reductive elimination occurs to form the C2@C2’
bond, thus furnishing the bridged bicyclic adduct 2. However,
when R = Ph, the normal [5++2] reaction pathway is favored.
C1’ of the allene will approach C2 to form INT2b. Then trans
insertion[27] of the inner double bond into Rh@C2 bond forms
INT3b (via TS2b).[28] Finally, the fused bicyclic product 3 is

formed by reductive elimination and the [Rh(CO)Cl] species
is regenerated to furnish the catalytic cycle.

To understand how the substituents at the alkene moiety
of the substrates affect the regioselectivity, we performed
preliminary DFT calculations[29] using the M06-2X/6-311 +

G(d,p)(SDD)//B3LYP/6-31G(d)(LANL2DZ) method (see

Scheme 3. Proposed mechanisms of bridged and normal [5++2] cycloadditions.

Scheme 4. M06-2X//B3LYP computed free-energy surfaces of the two competing pathways in 1,4-dioxane. For full energy surfaces, see the
Supporting Information.
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the Supporting Information). For simplification of the calcu-
lations, Ms-tethered model substrates were used without
sacrificing the reliability and efficiency of computations.
Considering that the insertion step is exergonic and irrever-
sible, the formation of either 2 or 3 depends on the relative
energies of the insertion transition states TS2 a and TS2b (see
Scheme 4).

DFT calculations suggest that, when R = H, TS2a-H (the
bridged [5++2] reaction pathway) is favored by 3.2 kcalmol@1

compared to TS2 b-H in the normal [5++2] reaction pathway,
and implies that the bridged bicyclic adduct 2-H would be
generated predominantly, and is thus consistent with the
experimental findings. This is because the transition state
TS2b-H, for trans insertion of the allene into the C2@Rh
bond, suffers strong repulsion between internal hydrogen
atoms in the allene moiety and those in the VCP moiety (the
corresponding H···H distances are 2.10 c and 2.16 c, within
the sum of van der Waals radii; see Scheme 4). In contrast, in
the bridged [5++2] pathway, the transition state TS2 a-H
reduces these steric repulsions by putting the allene moiety
away from the VCP moiety. Consequently, TS2 a-H is favored
over TS2 b-H. When R = Ph, insertion of the allene in the
bridged [5++2] reaction pathway via TS2 a-Ph requires
a higher activation Gibbs free energy (17.2 kcalmol@1 for
R = Ph and 14.3 kcalmol@1 for R = H) because of the
introduction of an additional p-lone pair repulsion between
the Ph group and Cl in the present case. The activation energy
for the insertion of allene in the normal [5++2] reaction does
not change for R = Ph, compared to that for R = H. As
a result, allene insertions by both pathways have close
activation energies and both bridged and normal [5++2]
cycloadducts are generated, thus agreeing with the exper-
imental observation.

DFT calculations have also been used to rationalize why
the carbon tether is not suitable for the bridged [5++2]
reaction, and we found that the carbon tether experiences
more steric repulsion in the transition state of the allene
insertion (see the Supporting Information).

In summary, a novel rhodium(I)-catalyzed intramolecular
bridged [5++2] cycloaddition of cis-allene-VCPs has been
developed to synthesize the challenging bicyclo[4.3.1]decane
skeleton. Preliminary DFT calculations revealed that the
allene insertion in the expected normal [5++2] cycloaddition
suffers from the repulsion between the allene and VCP
moiety in the transition state. In contrast, the bridged [5++2]
cycloaddition can reduce this repulsion by placing the allene
away from the VCP moiety in the allene insertion transition
state, thus leading to inverse allene insertion and giving finally
the bridged [5++2] cycloadducts.
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