ORGANIC CHEMISTRY

RESEARCH ARTICLE

Check for updates

Cite this: Org. Chem. Front., 2017, 4, 1785

Synthesis of dibromo- and tetrabromobipyrrolines and their corresponding 2,6-diazasemibullvalene derivatives†

Zhe Huang,^a Ming Zhan,^a Shaoguang Zhang,^a Qian Luo,^a Wen-Xiong Zhang^b *^a and Zhenfeng Xi*^{a,b}

Received 12th April 2017, Accepted 8th June 2017 DOI: 10.1039/c7qo00287d Treatment of Δ^1 -dipyrrolines with NBS afforded α, α' -dibromo- Δ^1 -bipyrrolines and $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo- Δ^1 -bipyrrolines respectively with excellent selectivity depending on the amount of NBS. All these multibromo-substituted Δ^1 -bipyrrolines could be efficiently transformed into their corresponding 2,6-diazasemibullvalene derivatives *via* reduction with lithium. An unprecedented rearrangement of 4,8-dibromo-2,6-diazasemibullvalene afforded a new type of bipyrroline derivative.

rsc.li/frontiers-organic

Introduction

2,6-Diazasemibullvalenes (NSBVs) have attracted fundamental interest both theoretically and experimentally for a long time because of their rapid aza-Cope rearrangement and the predicted existence of a homoaromatic delocalized structure (Scheme 1).¹⁻⁷ However, the synthesis and structural study of NSBV derivatives have been a great challenge in organic chemistry.

Müllen and co-workers reported the experimental *in situ* NMR identification of an NSBV, 1,5-dimethyl-3,7-diphenyl-2,6diazasemibullvalene as a breakthrough in 1982 (Scheme 1).^{5a} However, limited to the synthetic method of the reagent (Δ^1 -bipyrroline), only one example of NSBV was obtained. 30 years later, two efficient methods for the synthesis of NSBVs were reported by our lab in 2012.^{6a} A series of 3,7-dialkyl-substituted diazasemibullvalenes were synthesized and isolated from the reaction of dilithio reagents with nitriles.

 Δ^{1} -Bipyrroline derivatives are a class of important compounds with interesting structures. An *N*-containing fused-ring is a common moiety in synthetic intermediates and biologically active compounds.⁸ While synthetic methods for Δ^{1} -bipyrrolines are rare, we have found that the reaction of dilithio reagents with nitriles is an efficient way.⁹ Herein,

Scheme 1 2,6-Diazasemibullvalene derivatives.

based on the synthetic method of Δ^1 -bipyrrolines developed in our lab, we could largely expand the scope of NSBV derivatives. A number of 3,7-dialkyl-substituted and 3,7-diaryl-substituted NSBVs could be obtained in good to excellent yields.

The electron-withdrawing halide substituents on NSBVs are expected to have a remarkable effect on both the rate of aza-Cope rearrangement and their further reaction chemistry.^{3e,7} In our previous work, 4,8-dichloro-2,6-diazasemibullvalenes have been obtained efficiently *via* treatment of the corresponding $\alpha, \alpha, \alpha', \alpha'$ -tetrachloro- Δ^1 -bipyrrolines with lithium.^{6f} In this work, a series of $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo- Δ^1 -bipyrrolines and 4,8-dibromo-2,6-diazasemibullvalenes were synthesized *via* a similar strategy.^{9a,10} Meanwhile, the skeletal rearrangements

View Article Online

View Journal | View Issue

^aBeijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.

E-mail: wx_zhang@pku.edu.cn, zfxi@pku.edu.cn

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China

[†]Electronic supplementary information (ESI) available. CCDC 1056585 and 1056586. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7q000287d

Research Article

of NSBV and its derivatives are interesting, where the substituents play an important role in their thermal stability. Nonbridged NSBVs can undergo a thermal rearrangement to give 1,5-diazocine.^{5b} Bridged 4,8-dichloro-2,6-diazasemibuvallenes could undergo a different skeletal rearrangement to form bipyrroline derivatives.^{6f} When 4,8-dibromo-2,6-diazasemibuvallenes were synthesized and isolated, however, a new rearrangement was observed, demonstrating the different effects of halide substituents on the NSBV core skeleton.

Results and discussion

Based on our own synthetic method,^{9a} the starting materials, Δ^1 -bipyrroline derivatives **1a-f** used in this study were all obtained by the reaction of 1,4-dilithio-1,3-butadienes with 2 equivalents of nitriles. As shown in Scheme 2, the reaction of Δ^{1} -bipyrroline 1a with 2.4 equivalents of *N*-bromosuccinimide (NBS) at 80 °C for 12 h afforded the corresponding α, α' dibromo- Δ^1 -bipyrroline 2a in 48% isolated yield, along with a small amount of α, α, α' -tribromo Δ^1 -bipyrroline as a side product.^{10,11} Due to this side reaction, most α, α' -dibromo- Δ^1 -bipyrrolines (2a-2f) could only be isolated in moderate yields (Scheme 2). Nevertheless, a range of Δ^1 -bipyrrolines could be applied in this reaction, where R^2 were aryl groups (Ph, p-tolyl) or alkyl groups (^tBu, adamantyl). Non-bridged Δ^1 -bipyrrolines (1e and 1f) were also applicable for this reaction and their corresponding α, α' -dibromo- Δ^1 -bipyrrolines (2e and 2f) were obtained in higher yields.

As shown in Scheme 3, 2,6-diazasemibuvallenes could be easily synthesized by the reaction of α, α' -dibromo- Δ^1 -bipyrrolines with lithium in THF at room temperature. The *in situ* NMR experiment showed that α, α' -dibromo- Δ^1 -bipyrroline 2a

NBS (2.4 equiv.)

CCl₄, 80 °C, 12 h

2

2a: R² = Ph, 48%

2c: R² = *p*-tolyl, 49%

 \dot{R}^1

2e: R¹ = Me, 75%

2f: R¹ = Bu, 73%

2d: R² = ^{*t*}Bu, 42%

2b: R² = Adamantyl, 55%

R¹ Br

Scheme 2 The synthesis of α, α' -dibromo- Δ^1 -bipyrrolines.

Scheme 3 The synthesis of 2,6-diazasemibuvallenes.

was transformed to 2,6-diazasemibuvallene **3a** quantitatively without any side reactions. After removing LiBr, analytically pure 2,6-diazasemibuvallene **3a** could be obtained. However, due to the little solubility difference of **3a** and LiBr in the mixed solvent (hexane : Et₂O = 3 : 1), the isolated yield of **3a** was 81%. Similarly, 2,6-diazasemibuvallenes **3b**-**3f** were synthesized from the corresponding α, α' -dibromo- Δ^1 -bipyrrolines (**2b**-**2f**). Higher isolated yields could be achieved for 1,5-dialkyl-substituted diazasemibuvallenes (**3e** and **3f**) because of their higher solubility than LiBr in hexane. The NMRs of **3a**-**3c** showed the existence of a rapid aza-Cope rearrangement of 2,6-diazasemibuvallenes, which was similar to the known 2,6-diazasemibuvallenes **3d**-**3f**.

Tetrabromo- Δ^1 -bipyrrolines 4 were obtained in moderate to high isolated yields when 10.0 equivalents of NBS were used and the reaction time was prolonged to 48 h (Scheme 4). The structure of 4a was determined by single-crystal X-ray structural analysis (Fig. 1).

As shown in Scheme 5, 4,8-dibromo 2,6-diazasemibuvallenes **5a–c** were successfully synthesized and isolated from the reaction of $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo- Δ^1 -bipyrrolines with lithium in THF at room temperature *via* C–N bond formation. An *in situ* NMR experiment indicated that three $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo-

Scheme 4 The synthesis of $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo- Δ^1 -bipyrrolines.

1a: R² = Ph

1b: R² = Adamantyl

1c: R² = *p*-tolyl

R

1e: R¹ = Me

1f: R¹ = Bu

1d: R² = ^tBu

Fig. 1 ORTEP drawing of 4a with 30% thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å]: C(1)–N(1) 1.462(7), C(1)–C(2) 1.565(9), C(2)–C(3) 1.513(8), C(4)–N(2) 1.480(8), C(4)–C(5) 1.569(8), C(5)–C(6) 1.521(8), C(6)–N(1) 1.273(7), C(2)–Br(1) 1.965(6), C(2)–Br(2) 1.943(6), C(5)–Br(3) 1.931(6), C(5)–Br(4) 1.967(6).

Scheme 5 The synthesis of 4,8-dibromo-2,6-diazasemibuvallenes.

 Δ^1 -bipyrrolines could be transformed into the corresponding 4,8-dibromo-2,6-diazasemibuvallenes (5**a**-**c**) successfully.

The NMR spectra of all these dibromodiazasemibullvalenes showed the existence of an extremely rapid aza-Cope rearrangement in solution. The C3/C7 of **5c** displayed a singlet at 159.4 ppm in the ¹³C NMR spectrum in THF-d₈, which is a little downfield shifted than the value of C3/C7 of the corresponding non-brominated diazasemibullvalene (163.3 ppm)

Fig. 2 ORTEP drawing of 6 with 30% thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å]: C(1)–N(1) 1.292(7), C(1)–C(2) 1.496(7), C(2)–C(3) 1.321(7), C(3)–C(4) 1.485(7), C(4)–N(2) 1.298(6), N(2)–C(5) 1.476(7), C(5)–C(6) 1.538(7), C(6)–N(1) 1.479(6), C(2)–Br(1) 1.885(5), C(5)–Br(2) 1.969(5).

Scheme 6 Rearrangement of 4,8-dibromo-2,6-diazasemibuvallene 5c.

and upfield shifted than that of the dichlorodiazasemibullvalene (157.2 ppm).^{6a,f} Obviously, the bromide substituents had an electronic effect on the diazasemibullvalene core.

When diazasemibuvallene 5c was kept in THF-d₈ at room temperature, a slow skeletal rearrangement took place, as monitored by NMR, until 5c was totally transformed into a new bipyrroline derivative **6** after one month. This process could be promoted by light and completed in 3 days, and the product **6** was isolated in 82% yield. The structure of **6** was determined by single-crystal X-ray structural analysis (Fig. 2).

A similar rearrangement to that of 4,8-dichloro-2,6-diazasemibuvallene is proposed and shown in Scheme 6.^{6f} The reaction was initiated *via* opening of the three-membered ring destabilized by the bromide. Then the lone pair electron of the nitrogen atom transformed to build a C==N bond, generating a carbine intermediate 8 stabilized by the bromide. An intramolecular carbine attack occurred to give the intermediate 9, which afforded the product 6.

Conclusions

A series of α, α' -dibromo- Δ^1 -bipyrrolines and $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo- Δ^1 -bipyrrolines were synthesized and transformed into their corresponding 2,6-diazasemibuvallenes and 4,8-dibromo-2,6-diazasemibuvallenes *via* reduction with lithium. The successful synthesis of all these novel compounds should lead to further study on their chemical and physical properties.

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 21372012 and 21690061).

Notes and references

- 1 (a) H. E. Zimmerman and G. L. Grunewald, J. Am. Chem. Soc., 1966, 88, 183; (b) A. K. Cheng, F. A. L. Anet, J. Mioduski and J. Meinwald, J. Am. Chem. Soc., 1974, 96, 2887; (c) H. Ouast, A. Mayer, E.-M. Peters, K. Peters and H. G. von Schnering, Chem. Ber., 1989, 122, 1291; (d) H. Quast, J. Carlsen, R. Janiak, E.-M. Peters, K. Peters and H. G. von Schnering, Chem. Ber., 1992, 125, 955; (e) R. V. Williams, V. R. Gadgil, K. Chauhan, D. van der Helm, M. B. Hossain, L. M. Jackman and E. Fernandes, J. Am. Chem. Soc., 1996, 118, 4208; (f) L. M. Jackman, E. Fernandes, M. Heubes and H. Quast, Eur. J. Org. Chem., 1998, 2209; (g) H. Ouast, M. Heubes, T. Dietz, A. Witzel, M. Boenke and W. R. Roth, Eur. J. Org. Chem., 1999, 813; (h) M. Seefelder, M. Heubes, H. Quast, W. D. Edwards, J. R. Armantrout, R. V. Williams, C. J. Cramer, A. C. Goren, D. A. Hrovat and W. T. Borden, J. Org. Chem., 2005, 70, 3437; (i) C. Wang, J. Yuan, G. Li, Z. Wang, S. Zhang and Z. Xi, J. Am. Chem. Soc., 2006, 128, 4564; (j) P. R. Griffiths, D. E. Pivonka and R. V. Williams, Chem. - Eur. J., 2011, 17, 9193; (k) S. Zhang, M. Zhan, Q. Wang, C. Wang, W.-X. Zhang and Z. Xi, Org. Chem. Front., 2014, 1, 130.
- 2 (a) H. Jiao and P. v. R. Schleyer, Angew. Chem., Int. Ed. Engl., 1993, 32, 1760; (b) H. Jiao, R. Nagelkerke, H. A. Kurtz, R. V. Williams, W. T. Borden and P. v. R. Schleyer, J. Am. Chem. Soc., 1997, 119, 5921; (c) A. C. Goren, D. A. Hrovat, M. Seefelder, H. Quast and W. T. Borden, J. Am. Chem. Soc., 2002, 124, 3469; (d) S. C. Wang and D. J. Tantillo, J. Phys. Chem. A, 2007, 111, 7149.
- 3 For reviews of semibullvalenes, see: (a) R. V. Williams, Adv. Theor. Interesting Mol., 1998, 4, 157; (b) H. Hopf, Classics in Hydrocarbon Chemistry, Wiley-VCH, Weinheim, Germany, 2000, ch. 10, p. 209; (c) R. V. Williams, Eur. J. Org. Chem., 2001, 227; (d) R. V. Williams, Chem. Rev., 2001, 101, 1185; (e) S. Zhang, W.-X. Zhang and Z. Xi, Acc. Chem. Res., 2015, 48, 1823.

- 4 For theoretical studies of NSBVs, see: (a) M. J. S. Dewar,
 Z. Náhlovská and B. D. Náhlovský, J. Chem. Soc. D, 1971,
 1377; (b) D. R. Greve, J. Phys. Org. Chem., 2011, 24, 222;
 other heterosemibullvalenes: (c) H.-S. Wu, H. Jiao,
 Z.-X. Wang and P. v. R. Schleyer, J. Am. Chem. Soc., 2003,
 125, 10524.
- 5 For experimental studies of NSBVs, see: (a) C. Schnieders,
 H. J. Altenbach and K. Müllen, Angew. Chem., Int. Ed. Engl.,
 1982, 21, 637; (b) C. Schnieders, W. Huber, J. Lex and
 K. Müllen, Angew. Chem., Int. Ed. Engl., 1985, 24, 576;
 (c) B. Düll and K. Müllen, Tetrahedron Lett., 1992, 33,
 8047.
- 6 (a) S. Zhang, J. Wei, M. Zhan, Q. Luo, C. Wang, W.-X. Zhang and Z. Xi, J. Am. Chem. Soc., 2012, 134, 11964;
 (b) S. Zhang, W.-X. Zhang and Z. Xi, Angew. Chem., Int. Ed., 2013, 52, 3485; (c) S. Zhang, M. Zhan, Q. Luo, W.-X. Zhang and Z. Xi, Chem. Commun., 2013, 49, 6146; (d) S. Zhang, M. Zhan, W.-X. Zhang and Z. Xi, Chem. Eur. J., 2014, 20, 9744; (e) M. Zhan, S. Zhang, Z. Huang, W.-X. Zhang and Z. Xi, Chem. Asian J., 2014, 10, 862; (f) M. Zhan, S. Zhang, Z. Huang and Z. Xi, Org. Lett., 2015, 17, 1026.
- 7 (a) M. J. S. Dewar and D.-H. Lo, *J. Am. Chem. Soc.*, 1971, 93, 7201; (b) R. Hoffmann and W.-D. Stohrer, *J. Am. Chem. Soc.*, 1971, 93, 6941.
- 8 (a) A. Stapon, R. Li and C. A. Townsend, J. Am. Chem. Soc., 2003, 125, 8486; (b) J. D. White and D. C. Ihle, Org. Lett., 2006, 8, 1081.
- 9 For synthesis of Δ^1 -bipyrrolines, see: (a) N. Yu, C. Wang, F. Zhao, L. Liu, W.-X. Zhang and Z. Xi, *Chem. – Eur. J.*, 2008, **14**, 5670; (b) G. A. Abakumov, V. K. Cherkasov, N. O. Druzhkov, T. N. Kocherova and A. S. Shavyrin, *Russ. Chem. Bull.*, 2011, **60**, 112; (c) J. J. Eisch, K. Yu and A. L. Rheingold, *Eur. J. Org. Chem.*, 2012, 3165.
- 10 N. De Kimpe, R. Verh, L. De Buyck and N. Schamp, J. Org. Chem., 1980, 45, 5319.
- 11 Y. Wang, P. R. McGonigal, B. Herlé, M. Besora and A. M. Echavarren, J. Am. Chem. Soc., 2014, **136**, 801.