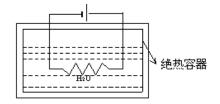
物理化学 B 第一次课堂练习

2024.03.04

院系: 姓名: 学号:

一、判断题:

- (×)1、体积、温度、功和热都是状态函数,其微小变化具备全微分性质。
- $(\checkmark) 2、一定量的理想气体膨胀时保持 <math>pV = A(常数)$,若在此过程中体系的压力总是只比外压大一 个无穷小量 dp,则此膨胀过程可以看作可逆过程。
- (✓) 3、等温准静态过程中体系对环境作的功最大。
- (✓) 4、能通过原来过程的反方向变化,使体系和环境同时复原而不留下任何痕迹的过程称为可 逆过程。
- (\times) 5、公式 $\Delta U = O_V$ 适用于封闭体系的一切等容过程。
- (✓)6、一定量的水在某温度下蒸发,水吸收的热大于体系所做的功。
- (×) 7、在1个标准大气压下,温度为373.15 K的液态水通过等温过程变为气态水。假设水蒸气 是理想气体,因为理想气体的内能仅是温度的函数,所以在这一相变过程中 $\Delta U = 0$ 。
- (\checkmark) 8、在任何简单变化中,一定量的理想气体体系的 $dU = C_V dT$ 。
- (\times) 9、在标准状况下,反应 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ 的摩尔反应焓变 $\Delta_i H_m^{\theta}(\Phi)$ 就是 HCl 的摩 尔生成焓 $\Delta_f H_m^{\theta}(\Phi)$ 。
- (✓)10、一个孤立体系在足够长的时间内必将趋于唯一的平衡态。


二、单项选择题:

- (A)1、关于理想气体的内能,下述四种说法正确的有:

 - (1) 温度不变时,内能一定不变; (2) 对应于某一状态,内能只有一个数值;

 - (3) 状态改变时,内能一定也跟着改变; (4) 对应于某一状态的内能是可以测定的;
 - A. (1) (2)
- B. (2) (4)
- C.(2)(3)
- D. (1) (2) (3)
- (B)2、如图所示,在盛满水的绝热容器中封有惰性电阻丝,以电 阻丝为体系,则通电过程中,体系的W、O和 ΔU 满足:

 - A. W = 0, Q < 0, $\Delta U < 0$ B. W > 0, Q < 0, $\Delta U > 0$
 - C. W = 0, Q > 0, $\Delta U > 0$ D. W < 0, Q = 0, $\Delta U > 0$

- (\mathbf{C}) 3、公式 $\Delta H = Q_p$ 适用于下列哪个过程:
 - A. 5×10^5 Pa 的理想气体对抗 1×10^5 Pa 的外压膨胀至 2×10^5 Pa
 - B. 在 p^{θ} 下电解 CuSO₄ 水溶液
 - C. 冰在 p^{θ} , 冰点下融化成水
 - D. 气体从 298 K、1×10⁵ Pa 可逆变化到 373 K、1×10⁴ Pa

(E	3)	4、	现有 1 mol 苯在刚性绝热容器中按下式燃烧:	$C_6H_6(1) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(g)$
				下列说法正确的是:	

A. $\Delta U = 0$, $\Delta H = 0$, W = 0

B.
$$\Delta U = 0$$
, $\Delta H > 0$, $W = 0$

C. $\Delta U < 0$, $\Delta H < 0$, Q < 0

D.
$$\Delta U = 0$$
, $\Delta H > 0$, $Q > 0$

绝热容器

三、简答题:

- 1、在盛满水的绝热容器中封有惰性电阻丝,请写出下面四种情况下 体系分别属于开放,封闭,孤立体系中的哪一种。
 - (1) 以电热丝为体系,其余为环境: _____开放体系___;
 - (2) 以水为体系,其余为环境: 封闭体系;
 - (3) 以电热丝和电源为体系,其余为环境: 封闭体系;
- 2、在物理量 H, Q, W, U, T, V, V_m, p (压强), ρ (密度), $C_p, C_V, C_{p,m}, C_{V,m}$ 中,

哪些属于强度性质: $T, V_m, p, \rho, C_{p,m}, C_{V,m}$

哪些属于容量性质: H, U, V, C_{D}, C_{V}

哪些不是状态函数: <u>Q</u>, <u>W</u> ;

哪些物理量我们无法获知其绝对数值: $\underline{H,U}$

3、写出焓的定义式: <u>H=U+pV</u>;

 $\Delta H = Q_0$ 是否适用于所有封闭体系等压过程: σ

公式 $Q_p = Q_V + \Delta nRT$ 完全适用的条件是: <u>封闭体系</u>,无其它功,反应物和产物为理想气体

- 4、已知下列反应在标准压力和 298 K 下的摩尔反应焓变:
 - (1) $CH_3COOH(1) + 2O_2(g) = 2CO_2(g) + 2H_2O(1)$ $\Delta_r H_m(1) = -870.3 \text{ kJ} \cdot \text{mol}^{-1}$
 - (2) $C(s) + O_2(g) = CO_2(g)$ $\Delta_r H_m(2) = -393.5 \text{ kJ} \cdot \text{mol}^{-1}$
 - (3) $H_2(g) + 1/2 O_2(g) = H_2O(1)$ $\Delta_r H_m(3) = -285.8 \text{ kJ} \cdot \text{mol}^{-1}$

试计算反应: $2C(s) + 2H_2(g) + O_2(g) = CH_3COOH(l)$ 的 $\Delta_r H_m^{\theta}(298 \text{ K})$ 。

解: 所求反应可由 (2)×2+(3)×2-(1) 导出,

则根据 Hess 定律,

此反应的 $\Delta_r H_m^{\theta}(298 \text{ K}) = [-393.5 \times 2 - 285.8 \times 2 - (-870.3)] \text{ kJ·mol}^{-1} = -488.3 \text{ kJ·mol}^{-1}$ 。