Strained Cyclic Allenes

Jiaqi Liu College of Chemistry and Molecular Engineering Center for Life Sciences March 25, 2023

Outline

Introduction

- Reactions and selectivity of strained cyclic allenes
 - Cycloaddition reactions
 - Metal catalyzed reactions

Summary

Outline

Introduction

Reactions and selectivity of strained cyclic allenes
 Cycloaddition reactions
 Metal catalyzed reactions

Summary

Strained Cyclic Intermediates

Anthony, S. M.; Wonilowicz, L. G.; McVeigh, M. S.; Garg N. K. *JACS Au.* **2021**, *1*, 897–912. Sletten, E. M.; Bertozzi, C. R. *Angew. Chem. Int. Ed.* **2009**, *48*, 6974–6998.

Applications of the Intermediates

Takikawa, H.; Nishii, A.; Sakaib, T.; Suzuki, K. Chem. Soc. Rev., 2018, 47, 8030-8056.

Allenes

Strained Cyclic Allenes

Marshall, J. A.; Sehon, C. A.; J. Org. Chem. 1997, 62, 4313-4320.

Barber, J. S. et. al. Nat. Chem. 2018, 10, 953–960.

Preparation of Strained Cyclic Allenes

Chari, J. V.; Ippoliti, F. M.; Garg N. K. J. Org. Chem. 2019, 84, 3652-3655.

Outline

Introduction

- Reactions and selectivity of strained cyclic allenes
 - Cycloaddition reactions
 - Metal catalyzed reactions

Summary

Reactivity of Strained Cyclic Allenes

Kelleghan, A. V. et. al. J. Am. Chem. Soc. 2021, 143, 9338-9342.

Structure of Azacyclic Allenes

Barber, J. S. et. al. Nat. Chem. 2018, 10, 953–960.

D-A Reaction of Strained Cyclic Allenes

Barber, J. S. et. al. *Nat. Chem.* **2018**, *10*, 953–960.

Theoretical Study of Regioselectivity

Diels–Alder partners	ΔG and ΔE (major regioisomer)	∆ <i>G</i> and ∆ <i>E</i> (minor regioisomer)	∆∆ <i>G</i> and ∆∆ <i>E</i>
61 MeO ₂ C + 30	TS1 $\Delta G^{\ddagger} = 19.1$ $\Delta E^{\ddagger} = 4.6$ $\Delta E_{\text{dist}}^{\ddagger} = 10.9$ $\Delta E_{\text{int}}^{\ddagger} = -6.3$	$\Delta G^{\ddagger} = 20.6$ $\Delta E^{\ddagger} = 6.2$ $\Delta E_{dist}^{\ddagger} = 11.2$ $\Delta E_{int}^{\ddagger} = -5.0$	$\Delta \Delta G^{\ddagger} = -1.5$ $\Delta \Delta E^{\ddagger} = -1.6$ $\Delta \Delta E_{dist}^{\ddagger} = -0.3$ $\Delta \Delta E_{int}^{\ddagger} = -1.3$
62 MeO ₂ C + 30	TS2 $\Delta G^{\ddagger} = 12.8$ $\Delta E^{\ddagger} = -1.6$ $\Delta E_{\text{dist}}^{\ddagger} = 8.2$ $\Delta E_{\text{int}}^{\ddagger} = -9.8$	$\Delta G^{\ddagger} = 17.7$ $\Delta E^{\ddagger} = 3.1$ $\Delta E_{dist}^{\ddagger} = 7.5$ $\Delta E_{int}^{\ddagger} = -4.4$	$\Delta \Delta G^{\ddagger} = -4.9$ $\Delta \Delta E^{\ddagger} = -4.7$ $\Delta \Delta E_{dist}^{\ddagger} = 0.7$ $\Delta \Delta E_{int}^{\ddagger} = -5.4$

Barber, J. S. et. al. Nat. Chem. 2018, 10, 953–960.

Transition State of D-A

Barber, J. S. et. al. Nat. Chem. 2018, 10, 953–960.

Dienes Changes Regioselectivity

Lissodendoric Acid Family

Lissodendoric acid A

Lissodendoric acid B

Lyakhova, E. G. et. al. Org. Lett. 2017, 19, 5320-5323.

Retrosynthesis

Key Reaction through Strained Cyclic Allenes

Total Synthesis

1,3-Dipole Cycloaddition Reaction

Barber, J. S. et. al. *Nat. Chem.* 2018, 10, 953–960.
Yamano, M. M. et. al. *Angew. Chem. Int. Ed.* 2019, 58, 5653–5657.
Krause, N.; Hashmi, A. S. K. *Modern Allene Chemistry*, 2004.

MOs of the Strained Cyclic Allenes

		HOMO/eV	LUMO/eV		
	Strained Cyclic Allenes a	-6.60	-0.12		
	Strained Cyclic Allenes b	-6.45	-0.29		
	Strained Cyclic Allenes c	-6.62	-0.14		
	Strained Cyclic Allenes d	-6.76	-0.49		
	Dipole 1	-6.98	-2.59		
	Dipole 2	-6.22	-2.55		
0.	74 0.68	0.70	0.71		
B3LYP-D3/def2tzvp					

Efrimova, M. M. et. al. Org. Biomol. Chem. 2021, 19, 9773-9784.

Theoretical Study of 1,3-Dipole Cycloaddition

Barber, J. S. et. al. J. Am. Chem. Soc. 2016, 138, 2512-2515.

TS of 1,3-Dipole Cycloaddition

Barber, J. S. et. al. J. Am. Chem. Soc. 2016, 138, 2512-2515.

Selectivity of 1,3-Dipole Cycloaddition

Efrimova, M. M. et. al. Org. Biomol. Chem. 2021, 19, 9773–9784.

[2+2] Cycloaddition

Yamano, M. M. et. al. *Angew. Chem. Int. Ed.* **2019**, *58*, 5653–5657. Almehmadi, Y. A.; West, F. G.; Org. Lett. **2020**, *22*, 6091–6095.

Stereoselectivity

Theoretical Study of Stereoselectivity

Ramirez. M. et. al. Angew. Chem. Int. Ed. 2021, 60, 14989–14997.

EDA Analysis

Ramirez. M. et. al. Angew. Chem. Int. Ed. 2021, 60, 14989–14997.

TS and MO Models

Ramirez. M. et. al. Angew. Chem. Int. Ed. 2021, 60, 14989–14997.

TS and MO Models

Ramirez. M. et. al. Angew. Chem. Int. Ed. 2021, 60, 14989–14997.

DNA-Encoded Library Synthesis

Westphal, M. V. et. al. J. Am. Chem. Soc. 2020, 142, 7776-7782.

Metal Catalyzed Reaction

Kelleghan, A. V. et. al. J. Am. Chem. Soc. 2021, 143, 9338-9342.

Ni Catalyzed Reaction

Yamano, M. M. et. al. *Nature* **2020**, *586*, 242–247.

Ni Catalyzed Mechanism

Yamano, M. M. et. al. *Nature* **2020**, *586*, 242–247.

Pd Catalyzed Reaction

Kelleghan, A. V. et. al. J. Am. Chem. Soc. 2021, 143, 9338-9342.

Outline

Introduction

- Reactions and selectivity of strained cyclic allenes
 - Cycloaddition reactions
 - Metal catalyzed reactions

Summary

Summary

