Planning Organic Synthesis: <u>From Programmed Logic to Artificial Intelligence</u>

Sicong Chen College of Chemistry and Molecular Engineering Peking University Dec. 2019

Contents

- Introduction
- Rule-based expert system
 - LHASA
 - Chematica
- Machine learning strategy
 - Machine learning and deep learning
 - Predicting reaction type by neural network
 - Template free translation
 - MCTS-3N space search
- Summary

Organic Synthesis is a Strategic Game

	Chess	Rubik's cube	Chemical synthesis	
Number of players	Тwo	One	One	
Movements	Small set of moves defined for each piece, some moves may not be allowed for some positions	Rotation of cube's single layer; always the same number of moves allowed	Very large (>10000) number of possible moves (i.e., reaction rules); applicable moves depend on the structure of the molecule; database of moves can grow as chemistry advances	
Start posi- tion	Always the same initial arrangement of pieces on the board; "white" player starts	(Random) rearrangement of the cube	Target that needs to be synthesized	
Position	Current configuration of the pieces on the board	Configuration of the cube	Set of substrates/synthons at each step	
End posi- tion	Check-mate or exceeding allowed time; draws also possible	Each of the six faces of the cube composed of one color	All substrates for target's synthesis judged as "available"	
Score of the game	Won/lost/drawn/not finished	Solved/not solved; in addition, the time or the number of moves might be counted (less moves = better score)	Viable synthesis found/not found; viability ultimately confirmed by experimental execu- tion; in addition to "hard" criteria (number of steps, yield) soft criteria such as "elegance" might be applied during evaluation	

Organic Synthesis is a Strategic Game

Chess

Rubik's cube

Chemical synthesis

On average, 80.2 distinct reactions can be applied to a non-trivial retron,^[13] translating into $\approx 3.5 \times 10^{28}$ possible 15-step pathways and $\approx 1.2 \times 10^{57}$ possible 30-step pathways

Commercially available Halaven is made in 62 synthesis steps^[15] which seems to be an upper bound for industrially relevant syntheses

In general, no single solution can be objectively deemed as "optimal" as it depends on available substrates and/or the criteria applied (e.g., minimal number of steps, green conditions, no protection groups, etc.)

Angew. Chem. Int. Ed., 2016, 55, 5904

Retrosynthesis Analysis: Disconnection Approach

Synthetic Target Classification

 Direct associative, where the synthetic target is a simple collection of 'undisguised' subunits, and where a minimal and uncontroversial analysis reveals the required starting materials.

Chem. Soc. Rev., 2005, 34, 247

Synthetic Target Classification

 Intermediate, where a complex synthetic target bears a close resemblance to another, but synthetically accessible, molecule, and the problem becomes finding the appropriate sequence of reactions for their interconversion

Cortisone, 2

Deoxycholic acid, 3

Chem. Soc. Rev., 2005, 34, 247

Synthetic Target Classification

 Logic-centered, where a logical analysis generates a synthetic tree without any assumptions as to the starting materials required.

 In the subject of logic-centered complex molecular synthesis, at the other end of the spectrum, we encounter a methodology limited only by the frontiers of chemistry and the power of human intelligence and creativity. (Corey, 1969)

> *Chem. Soc. Rev.*, **2005**, *34*, 247 Luo Group Meeting (CCME@PKU)

Computer-Assisted Synthesis Planning (CASP)

How to build the synthetic tree of the target **T**?

Whether a computer can do human 'logic-centered' analysis?

Organic Chemical Synthesis Simulation (**OCSS**) -Logic and Heuristics Applied to Synthetic Analysis (**LHASA**)

Workflow of OCSS-LHASA

10

History of the Harvard ChemDraw Project

David A. Evans*

Angew. Chem. Int. Ed., 2014, 53, 11140

In 1985 Stewart was an NSF-sponsored graduate student pursuing his PhD degree as a student with Professor E. J. Corey. Stewart was integrated into that group as a member of the LHASA^[1] effort. In September 1984 Stewart had also purchased a Mac, and he frequently visited our labs down the hall. He soon became interested in Sally's activities in slide preparation. She was producing india ink drawings with a Leroy Lettering Set (Figure 1). One of her frustrations was associated with the effort expended in creating a complex structure only to start over to draw the next structure in the reaction sequence where only minor chemical modifications had been made. On more than one occasion she suggested that I might consider working on structures less complex than vancomycin!

One afternoon during this period, Sally vented her frustration with the comment to Stewart: "How would you like to save my marriage?" In fact, this was a loaded question as she and I had already looked at the MacDraw software that appeared to be a reasonable starting point for a Mac-based structure-drawing program. This interaction culminated in a meeting between Sally, Stewart, and myself to discuss the possibility of creating such a program. Stewart stated that he would have a go at this challenge. Within several weeks he reported back with a rudimentary program that could handle many of the templates found on the Fieser Triangle. In his first rendition, the length of the line or the size of the ring was determined by the magnitude of the "drag" of the mouse from the "touchdown point." Sally then informed him that, while this feature was terrific, she also wanted to have the option of making all of the bonds the same length! Stew's response: "Why would you want to do that?" So began our meaningful collaboration into what was needed for a chemical drawing

Transform-based strategies

• Name Reaction based transformations: powerful reaction template

Carbo Diels-Alder Quinone Diels-Alder Hetero Diels-Alder Robinson annulation Position-selective partial aromatic reduction Cation π -cyclization Radical π -cyclization Aldol cyclization Sila-acyloin cyclization Internal S_N2 cyclization Internal nucleophilic acylation Internal ene reaction Internal cycloaddition: [4 + 2], [3 + 2], [4 + 3], [2 + 2], [2 + 1]Pericyclic cation or anion closure Sigmatropic rearrangements Photocyclizations Enantioselective π -addition Diastereoselective π -addition Fischer indole, Knorr pyrrole, and so on

Mechanistic transforms: to a reactive intermediate

 Structure-goal (S-goal) strategies: identification of a potential starting material, building block, retron-containing subunit or initiating chiral element

• **Topological strategies:** identify one or more bonds whose disconnection can lead to major molecular simplification

Preferred strategic bonds

Sarpong's retrosynthesis of Arcutinidine

For analysis ring topology online: http://www.maxbridge.org/

Science, 1985, 228, 408; JACS, 1975, 97, 6116; JACS, 2019, 141, 13713

- Stereochemical strategies: Stereoselective reactions, or steric based arguments used to reduce stereocomplexity
- Functional group-oriented strategies: Functional group interconversions and determining logical disconnections based off of functional group arrangement(s)

```
TRANSFORM 569
NAME GRIGNARD OPENING OF EPOXIDE
... PATH 2 BONDS
RATING 35
GROUP*1 MUST BE ALCOHOL
                                                                              CARRONH
                                                                              ARROAM:
KILL IF DONATING GROUP ON CARBON*2
                                        ... unstable epoxide
   ATTACH BROMIDE TO CARBON*3
   JOIN CARBON*2 AND HETERO1*1
                                                                            ROND/2
   BREAK BOND*2
                                                                 HETEROPHYSICS
                                                                            DOM:DO
   INVERT AT CARBON*2
. . . .
KILL IF CARBON*1 IS LESS*HINDERED THAN CARBON*2 ... undesired attack
```

```
Science, 1985, 228, 408
```

Example of LHASA's Retrosynthetic Analysis

Review of LHASA

Year	1967–1997?
Author	E. J. Corey (Harvard)
Database	Template, 2100+ reactions
Language gramma	CHMTRN (CH e M istry TR a N slation)
Interactive	Yes
Score	Chemist
Retrosynthesis	5 Strategies guided
Retrosynthesis depth	~15 to key transformation
Predict new reaction	No
Perspective	A large expert system; Time-consuming but suitable for sophisticated organic chemist

Chem. Soc. Rev., 2005, 34, 247

CASP Softwares Later

- SECS (Wipke, 1976)
- SYNCHEM (Gelernter, 1977)
- SYNLMA (Johnson, 1989)
- SYNGEN (Hendrickson, 1989)
- CHIRON (Hanessian, 1990)
- IGOR (Ugi, 1993)
- WODCA (Gasteiger, 1995)
- Etc.

Limitations:

- Too simplified rule sets
- Incompatible synthetic routes
- Poor computing power

Luo Group Meeting (CCME@PKU)

 O^2

H³

H⁴

 C^5

 N^6

18

Network of Organic Chemistry (NOC)

The complete network of chemistry in Chematica is more than 1000 times larger than human metabolic network!

Angew. Chem. Int. Ed., 2016, 55, 5904

Luo Group Meeting (CCME@PKU)

1900s

1950s

2000s

Key Challenges for Expert Systems

 ...we know that certain complex types of computational problems cannot be simplified too much... Synthetic planning cannot be done by teaching computer few hundreds of general rules or working by analogy to literature-reported reactions. Computer has to be taught an enormous

> 10000 rules required

Frequency

trained how to use them, and be able to s before its true power manifests itself.

Analysis of 1.2 million literature ported reactions randomly in NOC:

Luo Group Meeting (CCME@PKU)

Syntaurus in Chematica

- ARChem: Machine extract > 100k reaction rules from literature precedents?
- Synthesis planned by analogy, meaningless.

Angew. Chem. Int. Ed., 2016, 55, 5904

Chemicals' and Reaction Scoring Functions

- Chemical's Scoring Function (CSF), "synthetic positions":
 - Number of rings/stereocenter:
 - Creating as many rings/stereocenter as possible
 - Synthon's mass:
 Splitting into equivalent mass portions is encouraged
- Reaction Scoring Function(RSF), "synthetic moves":
 - Necessity of protection
 - Group incompatibility
 - Theoretically estimated yields

Interface of Chematica

Angew. Chem. Int. Ed., 2016, 55, 5904 Luo Group Meeting (CCME@PKU)

Example of Chematica's Synthetic Route

Trauner's total synthesis route:

Review of Chematica

Year	2001–present
Author	Bartosz A. Grzybowski (Ulsan National Institute of Science and Technology)
Database	ca. 20k hand-coded rules
Language gramma	Syntaurus (SMILES/SMART)
Interactive	No
Score	Scoring functions
Retrosynthesis	Syntaurus
Retrosynthesis depth	Full Automated
Predict new reaction	No
Perspective	A giant expert system; Automated, conformation not considered

Another Way...

Machine Learning

• Definition:

A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with the experience **E**.

• Tasks:

Regression vs Classification

• Algorithms:

Supervised learning (with labeled answer)

Unsupervised learning (data mining from unlabeled data)

Reinforcement leaning (maximizing rewards, *e.g.* AlphaGO)

Machine Learning Algorithms

Neural Network and Deep Learning

Machine Learning Approaches from Fingerprints

- Molecular descriptors (fingerprints) character similarity between molecules in chemical informatics.
- Physical descriptors
 - Molecular weight
 - Number of rings
 - Partial charge
 - •
- Predicted properties
 - Morgan fingerprint
 - Coulomb matrix
 - Radial distribution functions

- Reactivities
- ACS Cent. Sci., 2016, 2, 725

Prediction of Organic Chemistry Reactions

ACS Cent. Sci., 2016, 2, 725

Attempts to Solve Textbook problems

•

Problems from Wade's Organic chemistry, 6 th ed. Estimated pr					Estimated probability
	True Product	Major Predicted	Morgan Weighted	0	f correct reaction type
		Product	Taminoto Score		1.000
a) HCI	\sim /	\sim /	0.0000		0.791
	0.9998			0.748	
b) Br ₂ , CC	4 Br	Br	0.8863		1.000
	Br				1.000
c) BH ₃ TH	F HO	HO	0 8554		0.001
	H		0.000 1		0.073
$\frac{O_3}{(CH_3)_2S}$	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.9999		
e) HBr H ₃ COOC	► CH ₃	Br	0.9999		
f) HCI H ₃ COOO		HCI	0.3540		
g) PhCO ₃	H ►		0.4296	ACS C	ent. Sci., 2016 , 2, 725

Retrosynthesis based on ML and Rules

Chem. Eur. J., **2017**, 23, 5966

Retrosynthesis based on ML and Rules

1.0

Table 1. Results for the study on 103 hand coded rules.

Task/Model	Acc	Тор 3 -Асс	MRR	W. Prec.
Reaction prediction				
random	0.03	0.12	0.04	0.03
expert system	0.07	0.33	0.12	0.46
logistic regression	0.86	0.97	0.91	0.86
highway network	0.92	0.99	0.96	0.92
FC512 ELU	0.92	0.99	0.96	0.92
Retrosynthesis				
random	0.03	0.12	0.04	0.03
expert system	0.05	0.30	0.06	0.11
logistic regression	0.64	0.95	0.77	0.62
highway network	0.77	0.98	0.86	0.77
FC512 ELU	0.78	0.98	0.87	0.78

Retrosynthesis based on Translation Model

• Natural Language Processing (NLP):

Classical machine translation: Based on Rules (Dictionary) "我": → "I", <*noun>,* <u>subject</u>

Modern machine translation: Based on Statistics (Template Free) $P(y \mid x; \theta) = \sum_{z} \frac{\exp(\theta \cdot \phi(x, y, z))}{\sum_{y'} \sum_{z'} \exp(\theta \cdot \phi(x, y', z'))}$

Sequence to Sequence (seq2seq): Encoder–decoder Model

CC(C)(CO)c1ccc(Cl)cc1

CC(C)(C=O)c1ccc(Cl)cc1

Template Free?

Seq2seq Model in Retrosynthesis

Seq2seq Model in Retrosynthesis

• A partially completed beam search procedure

ACS Cent. Sci., 2017, 3, 1103

Searching Space in Retrosynthesis

a Chemical representation of the synthesis plan

b Search tree representation

Locating disconnecting position:

- (Previous) Heuristic best first search (BFS), difficult in: Large searching space
 - Chemists tend to disagree on what constitutes a good position
 - Temporarily **increase complexity** by the use of protecting or directing groups
 - The position value depends highly on the availability of suitable **precursors**
- Monte Carlo tree search (MCTS): **Reinforcement leaning MCTS-3N**
 - Random steps
 - Accept policies: *p*(*t*|*s*); *t*: transformation, *s*: position
 - Trained to predict the winning move

Nature, **2018**, 555, 604

Training the Policies and Filter Network

Reaxys

Content Overview Latest update: 14. December 2019 >				
118M	49M	59M	37M	
° Substances	👗 Reactions	🗗 Documents	🚱 Bioactivities	

12.4 million single step reaction

• Rollout set: (17,134 rules)

Contain the atoms and bonds that changed in the course of the reaction and the first-degree neighboring atoms.

Only rules that occurred at least 50 times in reactions published before 2015 were kept.

• Expansion set: (301,671 rules)

Only the reaction center was extracted (more general) Rules occurring at least three times were kept

In-scope filter network: (classifier of unsuccessful reaction) For high-yielding reaction: A + B → C, hypothetical products D, E,... are not formed Generated 100 million negative reactions

Nature, 2018, 555, 604

Filter Correlates with Electronic Properties

Integrating Neural Networks and MCTS

a Synthesis planning with Monte Carlo tree search

Performance of MCTS-3N

c Why did chemists prefer the literature over MCTS in task 1 of test a?

Example of a 10-step synthesis

Review of Deep Learning in Retrosynthesis

Year	2018
Author	Mark P. Waller (Shanghai University)
Database	Automated extracted from Reaxys (12.4 Million rxns)
Language gramma	SMILES/SMARTS
Interactive	No
Score	Neural Network
Retrosynthesis	MCTS-3N
Retrosynthesis depth	infinite
Predict new reaction	No
Perspective	Learn reaction rules from data; Few examples <i>in logic-centered</i> synthesis

Summary and Outlook

- Expert System:
 - Chemist-friendly
 - Precise but trouble-to-code rules
 - Poor scoring function
- Machine Leaning:
 - Preparation from big-data directly
 - Generation synthetic route rapidly
 - Lacking chemical meaning, black-box in algorithms
- Challenges in retrosynthesis of natural product:
 - Insufficient study than drug molecules
 - Scaffold complexity and diverse reactivity from small molecules
 - Require developing new methodology

Scoring Functions and Searches Methods

• Counting possible syntheses:

• Network searches in 51 different target:

• Cost Function: $C_{\text{tot}} = C_{\text{rxn}}^{\text{o}} N_{\text{rxn}} + \sum_{i} C_{\text{sub}}(i)$

labor, overhead, purification procedures commercially available starting materials

Popularity Function

 $P_{\text{tot}} = \sum_i 1/k(i)$