Mechanism of Lithium-Halogen Exchange and Related Reactions

Zhixian Guo CCME@PKU June 15th, 2019

Outline

Introduction

Single electron transfer (SET) mechanism

Nucleophilic ("ate-complex") mechanism

Structure and reactivity of organolithium

Summary

Acknowledgement

Introduction

Mechanistic Postulates for Li-Halogen Exchange

Electron transfer (radical) process

[R¹Li ^{•+} R²X ^{•–}]

Nucleophilic mechanism via halogen "ate"-type intermediate

Four-centered transition state model

Single Electron Transfer Mechanism

Electron-Spin Resonance Spectroscopy

isopropyllithium (1.86 M in n-pentane) with isopropyl bromide (0.66 M in a 6:1 benzene-diethyl ether mixture)

isopropyllithium with cyclopentyl bromide (second derivative presentation)

Fischer, H. J. Phys. Chem. **1969**, 73, 3834. Luo Group Meeting (CCME@PKU)

Radical Clock Experiments

J. Am. Chem. Soc. 1964, 86,2247 oup Meeting (CCME@PKU)Am. Chem. Soc. 1993, 115, 3855.

Is SET Mechanism the Only Pathway?

Retention of configuration at the carbon center connected to the halogen atom

^a The maximum rotation of the bromide is taken to be 111.6° and of the hydrocarbon¹⁸ 128° . ^b Enantiomer used. ^c Low value¹⁹ due to contamination with (+)-bromide. ^d Petroleum ether (30-60°). ^e Yield based on recovered bromide. ^f 1,2-Dimethoxyethane.

J. Am. Chem. Soc. 1964, 86, 3283.

Proposed other mechanism

Nucleophilic ("ate-complex") mechanism

$$\begin{array}{ccc} R-Li \\ + & & \\ X-R' & & \\ \end{array} \begin{bmatrix} R-X-R' \end{bmatrix} Li^+ & & \\ Li^+ & & \\ Li-R' & \\ \end{array}$$

Angew. Chem. 1958, 70, 65.

X-ray Structure of Ate–Complex

Г	able I. Selected Bo	nd Distances	(Å) and Angles (de	eg) for 2
	C(7)-I(1) C(1)-I(1) C(1)-C(2) C(2)-C(3)	2.403 (6) 2.331 (5) 1.375 (7) 1.370 (7)	C(3)-C(4) C(2)-F(2) C(3)-F(3) C(4)-F(4)	1.367 (7) 1.366 (5) 1.348 (6) 1.340 (6)
	C(1)-I(1)-C(7) I(1)-C(1)-C(2) C(1)-C(2)-F(2)	175.2 (2) 123.6 (3) 119.5 (5)	C(2)-C(1)-C(6) C(3)-C(2)-F(2)	114.8 (5) 116.6 (5)

"ate-complexes" favor linear geometries

J. Am. Chem. Soc. **1986**, *108*, 2449 Luo Group Meeting (CCME@PKU)

Does Four-centered Transition State Exist?

- "ate-complexes" favor linear geometries, which has also been suggested to be favored in nucleophilic substitution reaction at the halogen center
- intermolecular reaction requires a TS geometry TS geometry is dependent on the tether length

Probing the Transition Structure Geometry

J. Am. Chem. Soc. 1992, 114, 3420.

Double-Double Labelling Experiments

J. Am. Chem. Soc. **1992**, *114*, 3420. Luo Group Meeting (CCME@PKU)

Double-Double Labelling Experiments

$$11-{}^{79}Br, n = 1, Br = {}^{79}Br * H = H$$

$$11-{}^{81}BrD_2, n = 1, Br = {}^{81}Br * H = D$$

$$12-{}^{79}Br, n = 3, Br = {}^{79}Br * H = H$$

$$12-{}^{81}BrD_2, n = 3, Br = {}^{81}Br * H = D$$

Table 1. Composition of 15 from Isotopic Labeled 11								
isotopic composition ^a	reactant 11	product 15	intramolecular reaction ^b	intermolecular reaction ^b				
⁷⁹ Br	45	24	45	25				
⁸¹ Br and ⁷⁹ BrD ₂	10	52	10	50				
⁸¹ BrD ₂	45	24	45	25				

^a Error is $\pm 5\%$. ^b Expectation based on reactant labeling.

Table II. Composition of 20 from Isotopic Labeled 12

isotopic composition ^a	reactant 12	product 20	intramolecular reaction ^b	intermolecular reaction ^b
⁷⁹ Br	45	28	45	25
⁸¹ Br and ⁷⁹ BrD ₂	10	50	10	50
⁸¹ BrD ₂	45	22	45	25

^a Error is $\pm 5\%$. ^b Expectation based on reactant labeling.

Table III. Composition of 26 from Isotopic Labeled 13

isotopic	reactant	product		intramolecular	intermolecular	
composition ^a	13	26 ^b	26 ^c	reaction ^d	reaction ^d	
⁷⁹ Br	48	34	47	48	28	
⁸¹ Br and ⁷⁹ BrD ₂	11	32	13	11	50	
$^{81}BrD_2$	42	34	41	42	22	

^{*a*} Error is $\pm 5\%$. ^{*b*} The values expected for a reaction at 0.02 M which is 45% intramolecular and 55% intramolecular are ⁷⁹Br, ⁸¹Br and ⁷⁹BrD₂, and ⁸¹BrD₂ 36:33:30. ^{*c*} At 0.001 M. ^{*d*} Expectation based on reactant labeling.

J. Am. Chem. Soc. 1992, 114, 3420.

 $13-^{79}Br$, $Br = ^{79}Br *H - H$ $13-^{81}BrD_2$, $Br = ^{81}Br *H = D$

Transition Structure Geometry

Intermolecular reactions are observed for systems that would have a 6 or 8 membered endocyclic transition structure

> Intramolecular reactions is allowed in 18 membered endocyclic transition state

Halogenophilic Reaction

- the general susceptibility for halogenophilic processes increases in the order C(sp3)<C(sp2)<C(sp)</p>
- The carbanion forming in the halogenophilic reaction may also be stabilized by electron-withdrawing substituents in the molecule of organic halide.

Compound RH (bond)	p <i>K</i> a	Compound RH	p <i>K</i> _a
Alkane [C(sp ³) $-$ H], CH ₄	≥45	CH_3SO_2X	~26
Alkene (C(sp ²) $-$ H), CH ₂ $=$ CH ₂	36	CHCl ₃	15
Arene (C(sp ²) – H), Ph H	37	CHF_3	26
Alkyne (C(sp) – H), CH \equiv CH	25	$CF_2 = CFH$	~ 25
Toluene (C(sp ³) – H), PhC H_3	35	C_6F_5H	24
CH ₃ COOEt	~ 27	$(CF_3)_3CH$	7
CH ₃ CN	29	$(NO_2)_3CH$	<-1

Luo Group Meeting (CCME@PKU)

Reactivity of Nucleophiles

> A general trend is higher reactivity of soft, easily polarizable nucleophiles.

		R-	-Li Kob	s		┝━━Li R·	1	
R	K _{obs}	рК _а	R	K _{obs}	рК _а	R	K _{obs}	рК _а
Li	0.004	36.5	Me	3200	42	t-Bu ∕Li	3x10 ⁵	42
Ph—Li	1.0	37	Et~Li	7600	42	Li	1x10 ⁶	43
	9.5	39	(H ₃ C) ₂ HC Li	4 x1 0 ⁴	42	Li	8x10 ⁷	44

Russ. Chem. Rev. 2012, 81, 317.

Luo Group Meeting (CCME@PKU)

J. Am. Chem. Soc. **1962**, 85, 743.

14

Nucleophiles for Halogenophilic Reactions

Group 13 elements: R₂B-; **Group 14 elements**: carbanions, R₃Si-, R₃Sn-; **Group 15 elements**: trivalent phosphorus, R₂P-, R₂As-; **Group 16 elements**: RS-, RSe-, RTe-; **Transition metal carbonyl anions**: [CpFe(CO)₂]- and so on

Organometallics 2011, 30, 3018

Silicon Anions as Nucleophiles

- > S_N2 reaction on carbon results in retention of configuration on silicon
- Halide–lithium exchange and a subsequent S_N2 reaction on silicon leads to inversion of configuration on silicon

Eur. J. Inorg. Chem. 2011, 1454.

Competition Between S_N2C and S_N2Hal

Halide-lithium exchange via an ate complex: INVERSION on silicon

Calculated Transition State Energy

Figure 2. Calculated stationary points for the studied model systems H_3Si^-/Me_3SiCH_2Cl (left) and H_3Si^-/Me_3SiCH_2Br (right) [B3LYP/6-31+G(d), CPCM]; in both cases, an ate complex (ate-X, X = Cl, Br) and the S_N2 mechanism (S_N2-X , X = Cl, Br) were optimized; *Molekel* plots.^[36]

Figure 3. Calculated stationary points for the studied model systems $H_3Si^/PhCl$ (left) and $H_3Si^/PhBr$ (right) [B3LYP/6-31+G(d), CPCM]; in both cases, an ate complex and a reaction via an intermediate analogous to a Meisenheimer complex were optimized; *Molekel* plots.^[36]

Eur. J. Inorg. Chem. 2011, 1454.

Comparison of Group 14 Elements

^a Relative yields; absolute yields are in parentheses. ^b This work; see also ref 16. ^c Reference 16. ee = entantiometric excess.

> *Organometallics,* **1983**, 2, 906. Luo Group Meeting (CCME@PKU)

Ate Complexes of Other Elements

Besides halogens, Se, Te, Sb and Sn also formed easily detectable ate complexes in the more polar ethereal solvents

Figure 5. Some of the spectroscopically characterized ate complexes.

J. Org. Chem. **2012**, 77, 5471. Luo Group Meeting (CCME@PKU)

NMR Spectrum of Ate Complexes

Figure 6. ⁷Li NMR study of the exchange of PhLi with PhI and Ph₂Te at -105 °C in THF. At this temperature K_{ate} is large, and only the ate complexes **30** and **31** (no PhLi) can be detected when a full equivalent of PhI or Ph₂Te is added.^{34c}

Reactivity of Lithium/Metalloid Exchange

Figure 7. Rates of lithium/metalloid exchange reactions, compared with calculated ate complex energies.

J. Org. Chem. 2012, 77, 5471.

Structure of Organolithium Reagents

- Most organolithium reagents are aggregated in solution
- Degree of aggregation is strongly dependent on carbanion structure, solvent polarity, and the presence of donor ligands like TMEDA, PMDTA, HMPA and so on.

CIP: contact ion pair SIP: separated ion pair

Some structural types of organolithium reagents

Coordination solvents or cosolvents

J. Org. Chem. **2012**, 77, 5471 Chem. Rev. **2013**, 113, 7130

HMPA Titrations of a SIP and CIP

Equivalents of HMPA for 1:1 CIP/SIP

J. Org. Chem. **2012**, *7*7, 5471. Luo Group Meeting (CCME@PKU)

S_N2 Reactivity of Chelated Reagents

- ➢ When the S_N2 reactivity of chelated and nonchelated reagents was compared, the chelated ones were typically 1−3 orders of magnitude less reactive.
- Chelation may reduce the equilibrium concentration of the SIP, which we believe is the reactive nucleophile in most such reactions.

J. Org. Chem. 2012, 77, 5471.

Summary

Mechanism of lithium-halogen exchange includes at least radical mechanism and nucleophilic ("ate-complex") mechanism

```
Electron transfer (radical) process
```

```
\begin{bmatrix} R^{1}Li^{+} & R^{2}X^{-} \end{bmatrix}
```

Nucleophilic mechanism via halogen "ate"-type intermediate

 $\begin{bmatrix} R^1 - X - R^2 \end{bmatrix} M^{\dagger}$

- Halogenophilic reactions are possible for many organic halides, in the presence of sufficiently active halogenophilic reagent
- ate complexes of many main group elements are key intermediates in halogen-(metalloid)-lithium exchange reactions

 $R^1 - X + Li - R^2 \rightarrow Li - R^1 + R^2 - X$

X=Br, I, TeR, SbR₂, SnR₃ and so on

 R^2 =R-, R_2B -, R_3Si -, R_3Sn -, R_3P and so on