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ABSTRACT: Various polymers have been tested for protein
conjugation with a goal of bridging the complementary
advantages of both components. However, many of these
polymers, including the most well-established PEG, are
nondegradable, which raises potential concerns on their
cumulative chronic toxicity. Moreover, the immunogenicity
of PEG has recently evoked considerable controversy.
Synthetic polypeptides, on the other hand, are biomimetic
polymers with tunable degradability, versatile side chain
functionalities, unique secondary structures, and fascinating
self-assembly behaviors. These properties have made them
promising materials in protein modification for various
applications. In this Topical Review, we summarize recent advances and list a number of interesting future directions in
protein−polypeptide conjugation, which we termed protein PEPylation.

■ INTRODUCTION
Proteins are biological macromolecules with their versatile
functions mostly determined by their hierarchical structures.
Because of their high potency and selectivity, proteins are
extremely important in both industry and biomedicine.1−6

Nevertheless, the biological activities of proteins are often
vulnerable to environmental stresses including ionic strength,
temperature fluctuation, pH variation, and organic solvents.
This fragility necessitates special formulation and caution, and
thus increased cost in the storage, transportation, and handling
of proteins.7 In vivo, many protein therapeutics suffer from
rapid proteolytic degradation, renal filtration, and reticuloen-
dothelial system (RES) clearance. Moreover, repeated
administration of therapeutic proteins often elicits adaptive
immune responses and the generation of antidrug antibodies
(ADAs).8−10 There has been strong clinical evidence
correlating the lost efficacy and/or hypersensitivity of many
monoclonal antibodies (mAb) with the presence of ADAs,
even for those with humanized sequences. One vivid example
is Infliximab (brand name Remicade), one of the top 10 drugs
by global sales targeting the tumor necrosis factor-α (TNF-α)
for various inflammatory diseases. It was reported that up to
51% patients receiving this chimeric antibody were found to
develop ADAs, which were believed to associate with clinically
observed hypersensitivity and loss of therapeutic response.11

To this end, engineering approaches that can impart proteins
enhanced stability and stealthy property in vitro and in vivo are
highly desirable.
Polymer conjugation is one of the many approaches for

protein modification. Synthetic polymers are usually inex-
pensive, highly stable, and more importantly, readily tunable,

which are in sharp contrast to proteins.12,13 Both the structures
and properties of many synthetic polymers can be made
responsive under variable external stimuli (e.g., pH, temper-
ature, redox, electromagnetic field, and/or enzyme).14−16

Protein−polymer conjugates (PPCs), developed with a goal
of bridging the complementary advantages of both compo-
nents, are thus widely exploited as hybrid materials and drugs
for applications in biomedicine, biotechnology, and nano-
technology.17−20 Particularly, protein PEGylation (i.e., the
conjugation of polyethylene glycol (PEG) to proteins) has
gained vast success in long-acting drugs.21 Beyond that, the
research field of protein−polymer conjugates has expanded
enormously over the decades, ranging from the development of
diversiform site-specific synthetic approaches, introduction of
advanced characterization methods, to seeking alternatives to
PEGylation for various industrial and biological applications.
Many of these topics have been thoroughly discussed in recent
excellent review articles.22−30 Instead of duplicating with those
previous works, this Topical Review paper will briefly revisit
the achievements and limitations of traditional PEGylation,
and mainly focus on recent advances in protein PEPylation, a
term describing the modification of proteins with synthetic
polypeptides (also known as poly(α-amino acid)s).

Achievements and Limitations of PEGylation. PEGy-
lation has been the gold standard in protein−polymer
conjugation. PEG is a unique synthetic polymer possessing
the following properties: (1) cheap, narrowly dispersed, and
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ease in large scale synthesis; (2) nonionic and neutral; (3) high
hydration capacity: each repeating unit of PEG can coordinate
∼6−7 water molecules, which imparts a hydrodynamic volume
∼5−10-fold greater than those folded proteins of the same
molar mass; (4) generally considered safe and low immuno-
genic.31−33 All of these characters make PEG the most
successful candidate for protein modification. Since the debut
of the first protein−PEG conjugate in 1976, i.e., BSA-PEG,34

numerous proteins have been PEGylated via various
approaches.21,35 The first PEGylated protein drug, pegademase
bovine (Adagen), was approved by the Food and Drug
Administration (FDA) in 1990.36 Over the past three decades,
more than a dozen PEGylated proteins have been available on
the market treating diseases such as hepatitis, blood cancers,
melanoma, autoimmune diseases, gout, and hemophilia.
Despite those successes, however, the limitations of

PEGylation have recently drawn increasing concerns. Tradi-
tional PEGylation was usually realized through random
bioconjugation reactions with the amino group of the lysine
residue. The lack of site-specificity in PEGylation typically
leads to drawbacks such as tedious purification, difficulties in
characterization, dramatic loss in activity, and potential
regulatory issues. For example, up to 15 isomers were found
in PEG-INTRON after chromatography separation, with the
relative bioactivity of these isomers ranging from 8% to 37%.37

Similar results were also observed in PEGASYS38 and
PEGylated growth hormone.39 From this point of view, the
site-specific conjugations are increasingly pursued nowadays
for merits such as well-defined structure, simpler character-
ization, and homogeneity. Indeed, 4 out of the 15 approved
pegylated protein drugs listed in Table 1 are site-specific, and 3
out of the 4 site-specific PEGylated proteins are only
introduced in the past decade: Neulasta (N-terminus,

approved in 2002), Omontys (ε-amino group from a single
lysine, approved in 2012), Plegridy (N-terminus, approved in
2014), and JIVI (K1804C at the cysteine amino acid position
1804, approved in 2018).
Although PEG is commonly considered safe, increasing

evidence has shown that repeating injections of PEG-protein
drugs induced vacuoles in organs such as liver, kidney, and
spleen.40 This has raised growing awareness of the chronic
toxicity of PEG due to its nondegradable nature. In the
pharmaceutical industry, many PEGylated proteins failed in
preclinical and/or clinical trials due to the accumulative
toxicity of PEG. Even more concerning, the repetitive
administration of PEG has been shown to elicit immunological
responses including hypersensitivity and the so-called accel-
erated blood clearance (ABC) effect.41 The first indication of
the PEG immunogenicity was reported using PEGylated
liposomes.42 Boerman and colleagues observed that the
blood concentration of PEG-liposome at 4 h after the second
infusion was significantly lower than that at the same time
point after the first infusion. Similar effects were later
confirmed in PEGylated proteins in both animal models and
the clinic. Now, it is well-accepted that the generation of anti-
PEG antibodies, particularly anti-PEG IgM, is the major reason
for the ABC effect.43−45 Furthermore, anti-PEG antibodies
were shown to correlate with the loss of therapeutic efficacy in
the clinic.46 For example, in a clinic study using a commercial
PEG-asparaginase conjugate (brand name Oncarspar), anti-
PEG IgG or IgM antibodies were found in 13 (86.7%) out of
the 15 patients who had undetectable asparaginase activity in
plasma.47 More worrisome, anti-PEG antibodies were detected
in healthy people, and the positive population in pre-existing
anti-PEG antibodies soared significantly form 0.2% in 1984 to
27% in 2003.48−51 To address these issues, polymer

Table 1. FDA Approved PEGylated Protein Drugs

PEG(Mw:
Da) protein disease conjugation sitea

approved
time

Adagen 5000 Adenosine deaminase Severe combined immunodificiency
(SCID)

amino group of lysine and/or the N-
terminus

1990

Oncaspar 5000 Asparginase Acute Lymphoblastic Leukemia
(ALL)

amino group of lysine and/or the N-
terminus

1994

PEG-lntron 12000 IFNα-2b Hepatitis C amino group of lysine or the N-
terminus

2001

Pegasys 40000 IFNα-2a Hepatitis C amino group of lysine or the N-
terminus

2002

Neulasta 20000 G-CSF Neutropenia N-terminal methionyl residue# 2002
Somavert 5000 Anolog of hGH Acromegaly amino group of lysine and/or the N-

terminus
2003

Mircera 30000 EPO-β Anemia Due To chronic kidney
disease

amino group of lysine and/or the N-
terminus

2007

Cimzia 40000 Anti-TNF Fab Rheumatoid arthritis and Crohn’s
disease

Cysteine 2009

Krystexxa 10000 Recombinant uricase Chronic gout amino group of lysine and/or the N-
terminus

2010

Sylatron 12000 IFNα-2b Melanoma amino group of lysine or the N-
terminus

2011

Omontys 40000 Esatide Anemia Due to Chronic Kidney
Disease

ε-amino group of the C-terminal lysine# 2012

Plegridy 20000 IFNβ-1a Multiple sclerosis Amino group of the N-terminus# 2014
Adynovate 20000 Antihemophilic Factor VIII

(Recombinant)
Hemophilia A Amino group of lysine and/or the N-

terminus
2015

Palynziq 20000 Recombinantphenylalanine
ammonialyase

Phenylketonuria Amino group of lysine and/or the N-
terminus

2018

JIVI 60000 Antihemophilic Factor VIII
(Recombinant)

Hemophilia A K1804C# 2018

aNOTE: # indicates site-specific conjugation.
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conjugation beyond PEGylation has drawn tremendous
attention in the past decade.24,52−54 Notable examples (Figure
1) include polyolefins carrying N-hydroxypropyl,55−59 pyrro-
lidone,60−62 oligo ethylene glycol,63 sulfonate,64 trehalose,65,66

oxazoline,67 or zwitterionic side chains,68−70 poly(2-oxazo-
line),67,71−73 hydroxyethyl starch (HES),74−76 polysialic acid
(PSA),77 and hyaluronic acid (HA).78 Those pioneering works
have offered tremendous fundamental insight and redefined
the frontiers of the protein−polymer hybrids.
Synthetic Polypeptides as Promising Biomaterials.

Recombinant polypeptides such as XTEN, ELP, and PAS have
been fused to proteins/peptides, which demonstrated different
degree of success in long circulation and low immunogenic-
ity.79−85 These advances suggest a bright future of employing
polypeptides for protein modification. Among many promising
biopolymers, synthetic polypeptides have been attractive
biomaterials owing to their unique structural characters.86

First of all, polypeptides share identical peptidic backbone with
proteins, making both chemical hydrolysis and proteolytic
degradation possible. Second, the side chains of polypeptides
can be chosen from both natural and unnatural sources,
enabling the construction of large libraries. Indeed, the ring-
opening polymerization (ROP) of amino acid N-carboxyanhy-
drides (NCAs) has been a powerful platform providing pools
of new molecules. In the past decade, numerous functionalities
with versatile physical properties have been efficiently installed
to the side-chain of polypeptides via either direct monomer
design and/or post-polymerization modifications.87 Most

importantly and different from many synthetic polymers,
polypeptides can adopt higher ordered structures similar to
proteins. For instance, polypeptides are known to have
secondary structures such as α-helix and β-sheet via
cooperative hydrogen bonding, from which highly compacted
and ordered nanoscale architectures may be achievable via
hierarchical supramolecular self-assembly.88−90

A variety of synthetic polypeptides have been investigated in
biomedicine as drugs, additives, and delivery carriers.
Glatiramer acetate, a random copolymer constituted of four
canonical amino acids (tyrosine, lysine, alanine, and gluta-
mate), is a FDA-approved drug for multiple sclerosis with the
annual global sale reaching almost 4.0 billion USD in 2012.91

Poly(γ-glutamic acid) (γPGA), a poly(amino acid) normally
produced from bacteria or cnidarian, is a major constitute of
the Japanese food natto̅. First studied by Li and Wallace, γPGA
was approved by the FDA for cosmetics.92,93 The conjugate
containing a 40 kDa poly(L-glutamate) (PGA) and paclitaxel
advanced to phase III clinic trial (NCT00108745) in 2005.92

Kataoka and co-workers have developed numerous self-
assembled polymer micelles based on PGA and poly(L-aspartic
acid) for delivering various bioactive drugs including
doxorubicin (DOX) (NK911), paclitaxel (Ptx) (NK105),
SN-38 (NK012), cisplatin (CDDP) (NC6004), and oxalipatin
(NC-4016).94 Moreover, polypeptides have been extensively
tested as transfection materials,95,96 hydrogels for controlled
drug release and tissue engineering,97−101 and antimicrobial
materials.102−107

Figure 1. Examples of polymers that have been considered potential alternatives to PEG.
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Ideal PEG alternatives are required to possess outstanding
ability in preventing nonspecific biofouling, and many
polypeptides have shown such promise. Klok et al. synthesized
oligoethylene glycol modified (OEGylated) polylysine brushes
through surface initiated ring opening polymerization, which
showed effective prevention of nonspecific protein adsorp-
tion.108 Recently, Lu and colleagues tested the antifouling
property of PGA bearing OEGylated (PEG3Glu) side chains
and observed interesting effects on the helical conformation

and anchoring orientation (Figure 2A,B).109 Briefly, the
polypeptides L-P(EG3Glu) with a rigid α-helical conformation
produced superior antifouling properties compared to DL-
P(EG3Glu) that bears the same side chain but with an
unstructured conformation. The antifouling performance of L-
P(EG3Glu) can be further enhanced by anchoring antiparallel
orientated helices on the surface (L-C/L-N in Figure 2C,D).
By introducing a zwitterionic functional group such as
carboxybetaine (CB) to the side chain of L-P(EG3Glu),

Figure 2. (A,B) Chemical structures (A) and cartoon illustration (B) of nonfouling polypeptides on gold surfaces. (C,D) Adsorption levels of BSA
(C) or fibrinogen (D) on different polypeptide adlayers, measured by QCM-D.

Figure 3. Synthetic methods for protein PEPylation using hydrazine bond formation (A), disulfide bond formation (B), and thiol-maleimide
chemistry (C).
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ultralow nonfouling surfaces were produced with further
enhanced performances on antiprotein adsorption and anticell
adhesion.110 Together, those studies demonstrated that
polypeptides, flexible or rigid, are potentially excellent partners
for protein conjugation.

■ PROTEIN PEPYLATION

Synthetic Methods for Protein PEPylation. Protein
PEPylation was infrequently explored previously, with only a
few attempts made via random labeling (Figure 3). Walde and
colleagues used the aldehyde-hydrazine chemistry to attach
poly(D-lysine) (PDL) to enzymes such as α-chymotrypsin and
horseradish peroxidase (Figure 3A).111 The same approach
was also pursued by Reilly and Winnik to produce antibody−
polyglutamate conjugates.112 Talelli and Vicent described a
PGA-Lysozyme conjugate linked by disulfide bond (Figure
3B).113 Recently, Jiang and colleagues used carboxybetaine
polypeptide (PepCB) to modify uricase, a protein used for the
treatment of gout, via the combination of thiol-maleimide and
amine-NHS ester chemistries (Figure 3C).114 Nevertheless,
none of those pilot studies listed above employed a site-specific
bioconjugation method, which may result in problems similar
to those random PEGylations.
To enable site-specific protein PEPylation, one prerequisite

is the introduction of biorthogonal functionalities to both
macromolecular substrates. However, the conventional pro-
cesses of introducing the highly reactive functionalities are
typically time-consuming, labor-intensive, and multistep. Lu
and colleagues have developed a concise approach for the site-
specific protein PEPylation. To simplify the process and reduce
steps in the synthetic route, a new concept involving the in situ

generation of desired biorthogonal functionalities on the
polypeptides is proposed, as shown in Figure 4.115,116 In one
example, a reactive phenyl thioester was installed to the
polypeptides by using trimethylsilyl phenylsulfide (PhS-TMS)
as the initiator for NCA polymerization. Later, the same group
developed trimethylstannyl phenylsulfide (PhS-SnMe3) that is
more reactive and can produce ultrahigh-molecular-weight
polypeptides, also bearing the in situ generated phenyl
thioester.117 Those polypeptides can be directly used for
native chemical ligation (NCL, Figure 4A) with proteins
engineered with a N-terminal cysteine, yielding N-terminal
specific protein PEPylation in two steps. In another example,
the ROP of glycine NCA can in situ create a short
aminooligoglycine nucleophile, a substrate for the widely
used transpeptidase enzyme sortase A, at the end of the
polymer-of-interest. Subsequent sortase A-mediated ligation
(SML, Figure 4B) of the polymer to proteins bearing a sorting
motif LPXTG (X = any canonical amino acid) smoothly
afforded polymer conjugates at the C-terminus of the protein.
Remarkably, these two methods can be facilely combined for
the synthesis of PEPylated proteins harboring complex
topological structures. For example, a heterotelechelic
polypeptide bearing a phenyl thioester on one end and an
aminoglycine on the other end can be produced via PhSTMS-
mediated tandem NCA polymerizations in a one-pot fashion
(Figure 4C). The polypeptide can react with a protein flanked
with a N-Cys and a C-terminal LPXTG to give otherwise
inaccessible macrocyclic protein−polypeptide conjugates via
successive NCL and SML. Other types of conjugates, i.e., one
protein attached to two polymers or two proteins attached to

Figure 4. Site-specific protein PEPylation via native chemical ligation (A), sortase A mediated ligation (B), and the combination of the two for the
synthesis of macrocyclic protein−polypeptide conjugates (C).
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one polymer, can also be facilely generated by using different
combinations of the two methods.
PEPylated Proteins for Cancer Therapy. Polymer

conjugation is commonly used to endow higher stability and
longer half-life in vivo to the conjugated protein. However, this
was usually achieved at the cost of reduced pharmacodynamics

(PD) and diminished tissue permeability due to the steric
hindrance created by the attached polymer. To address this
dilemma, Lu et al. carefully compared several PEPylated
interferon (IFN) with different topology in their proof-of-
concept study (Figure 5A). They kept other structural
parameters of the PEPylated IFN identical or similar in

Figure 5. Cartoon illustration (A), antitumor efficacy (xenograft OVCAR3 mouse model) (B), and in vivo tumor penetration (C−F) of various
topological PEPylated interferon conjugates. The red fluorescence represents IFN conjugates. The dotted yellow lines indicate the regions of tumor
tissues with densely packed malignant cells. N-P(EG3Glu)20-IFN and C-IFN-P(EG3Glu)20 defines the linear IFN conjugates with the N- and C-
terminus of IFN attaching the polypeptide L-P(EG3-Glu)20(Mn ∼5 kDa), respectively; circ-P(EG3Glu)20-IFN denotes the macrocyclic IFN
conjugates with both the N- and C-termini of IFN attached to L-P(EG3-Glu)20. C-IFN-PEGis the C-terminal specific IFN-PEG conjugate, included
as a bench marker.

Figure 6. (A) Structure of the uricase-PepCB conjugate. (B,C) Antibody responses after the third immunization measured by enzyme-linked
immunosorbent assay (ELISA): antiuricase antibodies (B); antipolymer antibodies (C).
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order to isolate the topology effect. The rationale was that by
macrocyclizing the PEPylated proteins, the long acting
conjugates would be more proteolytic stable and tissue
permeable. This strategy has previously been vigorously
exploited for peptides (mostly at cellular or ex vivo level),
but never been tested for protein−polymer conjugates.118−122

Systematic and pharmacological evaluation of those conjugates
revealed that the macrocyclic IFN conjugate circ-P(EG3Glu)20-
IFN did give significantly higher stability, stronger binding in
vitro, and greater tumor inhibition ex vivo and in vivo (Figure
5B). Most interestingly, their results indicated a clear
macrocyclization-promoted tumor penetration (Figure 5C−
F) and profoundly enhanced antitumor efficacy in several
tumor models.123 This study thus provided strong exper-
imental evidence favoring the topology engineering in
protein−polymer conjugates.
Polypeptoids, analogues of polypeptides, have also been

suggested to be excellent alternatives to PEG. For example,
Polysarcosine (PSar), a highly hydrated, nontoxic and nonionic
polypeptoid, has a neutral and random coil structure similar to
PEG.124 Previously, PSar has been extensively exploited as a
stealthy polymer for nanoparticle coating125−127 and small
molecule conjugation.128 However, it has not been frequently
used for protein modification. In a preliminary study involving
the head-to-head comparison of PSar-IFN and PEG-IFN
conjugates, Lu et al. showed that the former outperformed the
latter in a xenograft OVCAR3 ovarian tumor model in mice,
underscoring the promise of PSar in protein therapeutics.129

Protein PEPylation for Reduced Immunogenicity. The
cumulative toxicity and the anti-PEG antibody induced ABC
effect have been the two major devastating reasons leading to
clinical failure of PEGylated protein therapeutics. In the search
of polymers “invisible” to the immune system and with better
protection capability to the protein drugs, The Jiang group
from University of Washington have pioneered many
zwitterionic polymers as alternatives to PEG. Recently, they
prepared a superhydrophilic polypeptide bearing high density
of zwitterionic CB (PepCB) groups in the side chain (Figure
6A).114 PepCB was shown to not induce detectable organ
toxicity, while cytoplasmic vacuolation was clearly observed in
kidney and spleen for the PEG group. PepCB and PEG were
then separately conjugated to uricase, a highly immunogenic
protein drug for gout treatment. They showed that the uricase-
PepCB conjugate stimulated 16-fold lower blood antiuricase
IgG titers than the uricase-PEG conjugate after three injections
to immunocompetent animals (Figure 6B). Moreover, anti-
PepCB antibody response was negligible in the former group
whereas anti-PEG antibodies were abundant in the latter one
(Figure 6C). The results provided strong evidence that
polypeptides, despite of their seemingly antigen-like peptide
backbone, are promising low immunogenic materials once the
side chain structures are properly optimized.
The Lu group from Peking University examined the

immunogenicity of polypeptides from the secondary structure
point of view. Previously, flexible and unstructured polymers
without a defined conformation are almost exclusively
preferred for protein conjugation.130 Typical examples

Figure 7. (A) N-Terminal specific PEPylation and PEGylation of engineered therapeutic proteins (IFN and GH) via native chemical ligation; the
Mn of the two polypeptides, L-P(EG3Glu) and DL-P(EG3Glu), and the bench marker PEG are all ∼20 kDa. (B,C) Antiprotein antibody titers (IgG
in (B) and IgM in (C)) after the fourth immunization.
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following this principle include PEG, XTEN, and ELP.131−133

Kataoka reported that polypeptide micelles bearing helical
bundles in the core afforded longer circulation and less
accumulation in the liver as compared to similar micelles based
on a racemic polypeptide.134 Inspired by this interesting
observation, Lu and colleagues hypothesized that synthetic
polypeptides may be less immunogenic when the rigid helix
backbone was shielded by long antifouling side chains. To this
end, they systemically evaluated the effect of the helical
conformation by setting up stringent control groups including
the benchmark PEG (Figure 7A).135 The work showed
proteins such as IFN and human growth hormone (GH)
conjugated to the helical L-P(EG3Glu) gave better in vivo
pharmacological results than those carrying flexible polymers
such as DL-P(EG3Glu) and PEG. Most interestingly, they
found a clear helix-dependent effect in minimizing the
generation of both antidrug and antipolymer antibodies
(Figure 7B,C). Although this counterintuitive observation
needs further validation in other protein drugs, antifouling
polypeptides, and/or different animal models, the interesting
helix effect may suggest a paradigm shift in the design principle
of protein−polymer conjugates.

■ PERSPECTIVES
The current studies have highlighted the promise of protein
PEPylation toward long-acting drugs. However, PEPylation is
still in its infant stage, with numerous challenges and
opportunities facing future researchers. From synthetic point
of view, more robust methods are necessary to enable site-
specific conjugation beyond the N- and C-termini.136,137

Introduction of specific peptide tags for sequence-specific
enzymatic reactions is a feasible route.122,138−141 Genetic and/
or metabolic incorporation of unnatural amino acids (UAA)
with special biorthogonal reactivity are also powerful tools for
such purposes.142−144 More examples and new functionalities
introduced by the in situ functionalization strategy will be
useful to further facilitate PEPylation.145 On the other hand,
further development of recombinant polypeptides with well-
defined sequence and self-assembly structures via either de
novo design or bioinformatics will be extremely interesting
approaches to construct genetically PEPylated proteins.146−151

The versatile self-assembly behaviors of polypeptides can be
another exciting strategy to advance and redefine the fronteirs
of PEPylated proteins.152,153 From the functional point of view,
applications beyond long circulation such as imaging, sensing,
diagnosis, intracellular delivery, catalysis, and self-assembly are
highly desirable. To fulfill such diversified applications, one
must significantly expand the arsenal of polypeptides suitable
for protein modification. Thanks to recent advances in NCA
chemistry, the past decade has witnessed the blossom of a wide
variety of side-chain modified polypeptides.86,154,155 Numerous
stimuli-responsive, biomimetic, and membrane active poly-
peptides have been developed,156−162 which lay the firm
material foundation pursuing new applications of PEPylation.
For example, on-demand switches of the catalytic activity of
enzymes by polypeptides sensitive to external triggers will be
the low hanging fruits. Increasing the stability, maintaining the
activity, and recycling of enzymes under extreme stresses are
important challenges for industrial applications.163 Targeted
cytosolic and/or nucelic delivery of functional proteins such as
Cas9 represents a significant hurdle for many proteins acting
on intracellular targets.164−171 Protein conjugates modified
with membrane-active polypeptides may offer a solution

toward this challenge. Last but not the least, one long-standing
challenge in the field is the lack of exhausted purification and
comprehensive characterization for quality control and
accurate structure−activity relationship analysis. New separa-
tion methods and characterization technologies are thus
fundamentally important and can never be overlooked.
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