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Abstract

The time effect in a series of flexible and rigid bolaform amphiphiles and their mixed systems with oppositely charged conventional
surfactunts was investigated. An. increase of surface tension with time was found in these systems at surfactant concentrations below the cme.
This result can be attributed to large numbers of surfactant molecules being gradually adsorbed on the wall of the vessel, which causes great
changes of concentration and composition in mixed surfactant solutions. Contact angle data and UV sesearch supported our proposal. It was
also found that this reverse time effect in single bolaform cationic surfactant systems is decided by the structure of the hydrocarbon chains

and only happens in flexible cationic bolaform surfactant solutions.
& 2003 Elsevier Science {USA). All rights reserved.
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1. Intreduction

Bolaform amphiphiles (bolaarmphiphiles) are molecules
with two potar head groups connected by one or two hy-
drophobic chains. These compounds have been the subject
of much research [1-5] in the past two decades for their
diverse interesting properties, Many efforts were made to
design and synthesize bola molecules with different struc-
tures [6-8] and characterize the aggregation behaviors of
their aqueous solotions {9—11]. The basic physical chem-
istry (such as the micellization and surface activity) of
these compounds has alse been studied. Usually the sus-
face tension of bolaamphiphiles is bigher and the aggre-
gation number is smaller than for conventional surfactants
[12-14]. Moreover, bolaamphiphiles tend to occupy large
areas at the airfwater interface compared to conventional
surfactants, indicating that they adopt a looped conforma-
tiont [15-17]. However, mixed systems of bolaamphiphiles
with oppositely charged coaventionai surfactants are much
less than enocugh. Based on the great significance of cationic
surfactants with simple structures, we would like to ex-
tend the research to mixed aqueous systems of bolaam-
phiphiles with oppaositely charged conventional surfactants.
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in this study, bolaamphiphiles with simple structures, flex-
ible ([NaOOC(CH;),sCOONa{CygNay), [Br {CH3}»Nt
(CH2)2oN1(CH3)3Br(CoMeg)]  and  [Br CsHsNT
(CH2)26N"CsHsBr~{CaoPy2)]) or rigid {[Br ¢CH3)3sN*t
{CH2}sOCeHaO(CH g NT(CH4)3Br (CePhCe) 1 and [Br—
(CH3)3 N (CH2)6OCs HaCa HaO(CH)eNT (CH3)3Br—(Cg
BPhC3s) 1), were synthesized, and a novel time effect of sur-
face tension was observed in mixed systems of a cationic
bolaform surfactant and a single-head anionic surfactant.
A special adsorption mechanism for bolaform cationic am-
phiphiles in mixed systems on negatively charged glass walls
was proposed.

2, Materials and methods

The bolaamphiphiles, CaoNaz, CopMeg, and CopPyo
were syathesized according (o the literature method [ 8-20]
from eicosanedijoic acid. CsPhCg was synthesized according

N{CH3} -
l Br(CHalsN*(CHyle0O— / yO(CHQ)BN“-(CHa):;Br

Br{Ch,)gBr

Br{CHy )0 7N O{CHzigBr
KaCO3, acetone =

Scheme 1. Synthesis of bolaamphiphites, CgPhCq.
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to Scheme 1, First, hydroguinone was allowed to react with
excess i-dibromohexane to get a dibromide with a phenyl
gronp in the center. Then the dibromides were guatcrnized
with trimethyl amine t get the final products, CgBPhCq
was prepared by the same procedure as CoPhCy except that
2.7 -biphenol was used instead of hydroguinone. All the
intermediates and the final products were determined o be
pure by TH NMR and TLC and gave satisfactory analylcal
resufis,

The surface tensions of different mixed systems of bo-
laform amphiphifes/oppositely charged conventional surfae-
tants were measured by the drop volume method [21]. The
concentration of CogPys in the CopPya/SDS system at vari-
ous agimg times was determined at Shimadeu UV-250. The
contact angle was measured by 1Y-82 contagt angle mea-
SUremenis.

3. Results and discussion

The y-log C curves of different mixed systemns of bo-
laamphiphiles/oppositely charged conventional surfactant
are shown in Fig. L

The adsorption amount of surfactants { M) was caleu-
fated according to the Gibbs adsorption equation since the
ionie sirength was Kept constant:

Foemm —dy /2303RT dlog C.
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Table 1

Here ¥ is the surface tension in mN/m. C is the concentra-
tion of the corresponding surfactant in a single system, while
it represents the total concentration in a mixed bola/SDS
system. [, is the saturate adsorption amount in mol Jme
dv /dlog C is the maximal slope in cach case. 7 is absolute
average area per surfactant molecule (Awin) is obtained from
the saturated adsorption by

Amin = 107/ Na T

Here My is the Avogadreo constant.

The surlace tension of concentration at the omc (Vene
the saturated adsorption (D), and the minimum average
molecular area {A s in mixed surfactant systems acg lsted
in Table 1, as well as the cme. It is seen that afl the cmc
values of these cationic systems are small, but the yu's are
higher than those of conventional [22-24] cationic systems
and gemini-containing mixed systems |23}

The time effect of surface tension for various cationic
hola/oppositely charged conventional surfactant [sodium do-
decylsulfate (SDSY or 1 HpzCOONa] systems at total con-
centrations of swrfactants (Cp) below the eme is showa in
Fig. 2. It is very interesting to note that the surfuce tension
of all these systems increased apparently within 24 h. This
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Fig. 2. Time-dependent surfuce tension changes of catiopic botaform am-
phiphiles and mixed surfactants (30°Cy (1) UapPyo. 25 x 1077 M,
[NaBr] = 0.8 My (2) CopPy/SDS, Oy = 6.25 % 1p-a Xppig = 033,

[NaBr| = 0.3 M (3) Cop Pyo/SDS, O = 2,25 x 107 M, KXo, = 039,

SDS, O = 7.84 x 1005 M. [NaBr] = 0.1 M: (6) CoBPRC/SDS,
Cop =983 5 1070 M, [NaBr] = 0 F M,

Surface physicochemical propertics of bolafnem amphighile/oppositely charged comventional surfactant systems (X, = 3.33, 307°0)

1 eme tmol/b

Veme  (MN/m) 10 iy (mi0E M)
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CopPys/SDS 0.33
CPhCe/SS 25
CoBPRC/SDS 0.6t

ChpMNax/Cia B 3.70

8.6 272 .61
3ie 2.82 0.59
41.8 2.6 0.63
34.8 268 {162
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Fahle 2 Fable 3

The chasges of absurbance and surface tension of CapPya/SDS syslern The varialions i concentration of Cag Py~ inthe tresh Cap Py /SIS syvstem

wiilt e [ (hy o 1 5 12 24

7 {h) Y 4 8 " 14 Absorbance 0.050  01S1 0431 DAS1 (IS

Sbsorbance (.11 OO D 0 0,100 108 (motdm ) 5.0 0 301 5.91 5.91

0% imoldm ™™ 5.63 431 3.63 344 338 ] ) S o :

oo (N N 16,0 117 487 45.0 19,1 X]:‘U]-_-] = fq]..’i}; (.-[‘- = 2.25 >/ 1 M. The LT&l[El were recorded aller he
T . o 0 ye o original ConPya/SDS sofution was removed from the vessel, and then the

v imhm ) 6.0 .1 9.2 493 A3 vessel was refifled with feosh Cap Py 2 /SDS solution.

Klala = 337 Op o= 225 x 0% M, Veale was caleulated from the

concansration detected by UV—ves spectrar powas e examined susface
fension of the solation by exparimaent.

phesomenon is obvioushy different from the normal dvnamic
surferce tension, which uswvally decreases with tine and for
most agueous surfactant solution reaches equitibrium within
an hour. Morcover, this o fuscinating phenomenon is ob-
served in mixed cationic bola surfactant/anionic single-head-
group surfactant systems, but not i mised anstonic bolaform
surfactant/cationic single-head-group swfactant systems or
conventional cationic-anionic surfactant mixed systems. Ina
mixed CrgMNao/decvltriethvlammonium bromide (o Biz) or
oy e NMeaBr— 0, Hapy o COONa {n = §, 10,12, m =
8. 100 12y solution, the surfuce tension will reach equitibrium
In 30 min. Thus the slow increase of surface tension in these
systems cannot be attritited to the adsorption of surfactants
onto the atrfwater interface.

It is well known that the surface tension 1s determined
by the surface composition, and hence by the composition
of the bulk solution: therelore the most possible cause for
this phenomenon may be o the decrease of surfactant con-
centration i bulk solution. In order 10 prove this, we deter-
mned the CaPyz concentration in the CapPya/SDS svstem
at various aging times by LW—vis spectrum. The resudis (Ta-
bic 23 showed that the concentration of CapPy» decreased
with time. According to these measured cancentrations, cor-
responding surface tension values of the solution can be
reud from the equilibrate surface tension corve and listed in
Table 2 as caleulated surface tensions (yee). Interestingly,
these calculated surface tension values coincide with the
ariginal measured results very well, thus providing strong
SUPPOSE L0 O assumplion.

A Turther question is the mechaniym of the very slow vari-
ation of surfactant concentration, 1t is well known that glass
surfaces are usually negatively charged and tend (o absorb
the cationic swiactants, As an evidence, when a CopPyof
sodiur dodecy Bsuifate (SD8) mixed solution (Xpoy = 0033,
fare tension of the solution was found o increase gradu-
ally with time. Alter about 24 b the surface tension value
did uot change any more. Then the solution was removed
[ront the vessel and the sume vessel was refilled with a fresh
CaoPy2/SDS solution at the same concentration. The surlace
tension of this fresh solution was measured again and no
change with aging time was detected. Similarly, we exam-
e the concentration change of CapPya in the refilled ves-
sed by LVeviy spectra. T was found that the surfactant con-

centration of this fresh solution did not vary within 24 h: The
result is listed in Table 3. Obviously, after the adsorption on
the vessel wall was saturated, no more surfactant molecules
would be adsorbed. Hence the concentration of the solution
would pot decrease and the surface tension of the selution
would not change.

A possible explanation for the phenomena mentioned
above is that cationic bolafornt amphiphiles will be adsorbed
onto the solidMiquud interface through a special process. We
supposed, first, that the catiomic bola swrfactant molecules
would be adsorbed onto the negatively charged glass surface
by electrostatic attraction, with two head groups tightly tied
o the surface. By this time, the adsorption amount s small
and the area taken by each molecule in the solidfdiquid
interface 1s large. After this fast process, the glass surface
is covered by lying down bolaform cationic surfactants
and # becomes somewhat hydrophobie for the exposure
of (he hydrocarbon chain 1o the agucous media, which is
not heneficial to the energy decrease of the whole system.
The surfactant molecules in the solutions stiff have a strong
tendency 1o “escape” 1o the solid/digquid Interface due to the
hydrophobiceffect. Afterwards, one of the polar heads of the
bolaform cationic melecule gradually leaves the surface of
the vessel, making the cationic bolaamphiphilic molecules
stand up (Scheme 2) and feave area Tov other surfactant
molecules in the sofutions. This causes an increase of the
adsorption amount and a decrease of the area per molecule
taken in the scdid/Tiquid interface. Since both the vessel wall
and the anionic molecules, especially the anionic surfactant
molecules in solution, may attract the polar heads of cationic
bolaamphiphites, it takes a long time for the bolaform
molecnies to stand up,

Since the concentrations of the systems studied were
considerably low, the change of concentration causcd by
adsorption could not be izgnored and the change of solution
surface tension can be easily observed. If the explanation
ahove is true, a change of the glass susface from hydrophohic
to hydrophilic should be observed. To determine this, the
contact angles of several mixed surfactant solutions on the
slass surface were measured {Fig. 3). It was found that
the contact angles of these systems decreased gradusily
with time (the total decrease of contact angle was large),
which was in accordance with the results of surface tension
measurement and the supposed adsorption process, On the
aother hand, the contact angles of conventional cationic
surtactants and anionic bolalonn surfactants hardly changed
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Scheme 2. Proposed mechanism for adsorplion of bolalorm cationic amphiphiles in mixed systems on the surfice of glass.
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with time (Fig. 3). The above measuremont lully supports
our assumpiion about the surface sdsorption,

However, for the single-cationie-bolaamphiphile systems,
the situaiion s o litde different. The reverse time cifect
is found only in flexible-chained cagionic holaamphiphiles
(Fig. 23, such as CopPye and OopMee. but not in dgld
CoFhily and CaBPhO, systems. This may be attributed to
the different flexibility of the hyvdrocarbon chain in these
cattonic serfactanis, For CapPy: and CagMee, the flexible
frvdrocarbon chaln stands up eastly ander clectrostatic intey-
action with reverse 1ons and hydrophobic interaction with
other bolas o the solaton (Scheme 3}, But for the rigid
bola molecules, this process becomes a little difficull, On
one hand, the interface encrgy of water/benvzene is 35 mN/m
(2070 white that of water/alky! is as high as 30 mN/m [26]
mnder the same conditions. Thus the pheoyl group v some-
what hydrophilic when compared with the alkyl chain; there-
fore 163y o Htde more comfortable for the rigd bolas 1© ex-

solid

Proposed mechanism for adsarption of single fexible bokaform caronic amphiphifes systems on the sorfoce of whss,

pose their hydrocarbon skeleton to water than for foxible-
chained molecules W0 do so. On the other hand, the rigidity
of the phenyl group restricts the free movement of the hydro-
carbon skeleton. Both factors make i difficult for the rigid
bola molecules fo stand up. The time-dependent contact an-
le experiments (Fig. 3) support this proposal very well.

4, Buminary

In summary, the surface tension will increass i cotionic
bolaform amphiphilefanionic surfactant mixed sohdions,
doe o farge amounts of sucfactans wolecules are gradually
adsorbed on wall of vessel, which cause great change of con-
centration and composition in mixcd surfactant solutions,
This effect will be obvious at surfuctant concentrations be-
low the cme. sinee e relative influence of solid/liguid ad-
sorption on concentration and composition in mixed surfac-
Lant solulions will be far greater. Hat the reverse fime effect
in single boluform cationic surfactant svstems s up to the

structure of the bydrocarbon chains, which can be observed

anly in Hexible cationic bolaform surfactant solutions,
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Vesicles and Other Self-organized Molecular Assemblies Formation in Nonagueous
Solvents”

Huang Jian-Bin

Han Feng Wu Tac

( State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Mulecular Engineering,

Peking University, Beijing HIIBTT)

Abstract  Formation of vesicles, micelles and other self-organized molecular assemblies in nonagueous and
mixed selvents was reviewed. Especially, the influences of dielectric constant variation on aggregation behavior of
cataionic surfactant mixtures in nonaqueous solvents were fully discussed. The situation about the formation of re-
verse micelles and other self-organized molecular assemblies in nonaqueons solvents was also summarized.
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